DATACOMPUTER PROJECT
SEMI-ANNUAL TECHNICAL REPORT

ADA108040

March 13, 1974 to June 30, 1974
une 25, -

" Contract No. MDA903.74-C-0225
ARPA Order No. 2687

Submitted to:

 Defense Advanced Research Projects Agency
3800 Wilson Boulevard
_Arlipgton, Virginia 22209

-

Computer Corporation of America
575 Technology Square
Cambridge, Massachusetts 02139

DATACOMPUTER PROJECT
SEMI-ANNUAL TECHNICAL REPORT

March 13, 1974 to June 30, 1974

APPROVED TAR PURLT? AT EASH.
DISTRIBUTION UNIMTIED 4

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was
monitored by the U.S. Army Research Office, Defense Supply
Service--Washington under Contract No. MDA903-74-C-0225. The
vlews and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily
representing the official policles, either expressed or
implied, of the Defense Advanced Research Projects Agency

or the U.S. Government.

B 6 o dvobe R TN NI vt w3

T ek BB

b e P s

Abstract

k
The datacomputer system 1s beling designed as a large-scale ['
data storage utllity to be accessed from remote computers on ’
the Arpanet and, potentially, on other networks. The
development is phased, with each successive release of the
system offering increased capabilities to users. During
the present reporting period, the second major release of
the system became operational. This release, while still
primitive 1n many respects, is beginning to provide experience
with actual applications and user programs.

A

e e K ML Ay

L

va Rt

*A“c.coé;:.’ic;; For .——j
| TRTTS GRARI
| | DTIC TAB
‘ Unannouraed M i
| Juatisicotion)
| ———
— I !
BY moee e e I
| Distrihutinn/ B
"{ Avalloi o iy Codas
’ DS A O 1‘
Dist o oiad ;

X

\
t
i
l

- .. - -
DRSS :
sl A . T
B i

Table of Contents

1N 0% < B - Y i
1. Overview....iieeveeneenennons Gttt es e st 1
1.1 Review of Baslc ConceptS... s eeessisceracssncas 1
1.2 Status of Project.....c.vciivann. et e se e 3
| : 2. Software Implementation....... ettt e et 7 .
| 2.1 Request Handler......eeeeeueeenn. e, 7
7}
2.2 SerVICES .. .iv ittt ontsonasossasesansonanans - 9 :
3. Network ServicesS.. ... iieteeseesessssesessoensansans 10 §
3.1 User Programs............ ettt it 10 %
3 3.2 USer StatistlcS.....ieeeerrnnereernnnnannnaennn 11 :
|
‘ Appendix: Working Paper No. 9, "Datacomputer Version _
0/10 User Manual", June 1, 1974............c.. 13 '
? Figures
1. Logical View of Datacomputer........ cheee st ens s as oo
2. Hardware Overview of System.......ceveeeeenn e e e
3. Hardware Block Diagram - CCA Installation........... 5
4 i
. /
L |
l
b .| 1
' { ; -11-
'T ‘ B I A T i . e . Y I— ‘.__.,.__.1

1. Overview

1.1 Review of Basic Concepts
The goal of the project continues to be the development of
a shared, large-scale data storage utility, to serve the
needs of the Arpanet community.

The system under development will make it possible to store
within the network such files as the ETAC Weather File or

the NMRO Seismic Data File, which are measured in hundreds

of billions of bits, and to make arbitrarily selected parts

of these files avallable within seconds to sites requesting
the information. The system 1s also intended to be used as

a centralized facility for archiving data, for sharing data
among the various network hosts, and for providing inexpensive

on line storage to sites which need to supplement their 1local
capability.

Logically, the system can be viewed as a closed box which

is shared by multiple external processors, and which 1is
accessed in a standard notation, "datalanguage" (see Fig. 1).
The processors can request the system to store informatilon,
change information already stored in the system, and retrieve
stored information. To cause the datacomputer to take actlon,
the external processor sends a "request" expressed in data-

language to the datacomputer, which then performs the desired
data operatlons.

From the user s point of view the datacomputer 1s a remotely-
located utility, accessed by telecommunications, It would be
impractical to use such a utility if, whenever the user wanted
to access or change any portion of his file, the entire file
had to be transmitted to him. Accordingly, data management
functions (information retrieval, file maintenance, backup,

EEZ T R

e

DATACOMPUTER
w
Q
g
2
Q
2
<
-4
<
=
<
Q
PROCESSOR PROCESSOR PROCESSOR
1 2 N

Figure 1. Logical View of Datacomputer

-2

LI . v - s EaTIRCy ¥ o

¥

'.”Tii' PYEITIR

t koA

oy

e

o -

) access security, creation of direct and inverse files, main-- * 1
1 tenance of file directories, etc.) are performed by the data-

! computer system itself. The user sends a '"request", which h
causes the proper functions to be executed at the datacomputer

without requiring entire files to be shipped back and forth.

The hardware of the system is shown in overview 1in Fig. 2 and
in greater detail in Fig. 3.

The program for the system processor handles the interactions
with the network hosts and 1s designed to control up to three
levels of storage: primary (core), secondary (disk), and

KRR TT U AT OO

tertiary mass storage. Currently, the CCA facillity is operating
with nrimary and secondary storage only, with the addition of

PR

tertlary storare planned for 1975. Installation of a tertilary
storage module will leave datalanguage unchanged, and will
therefore be imperceptible to users of the system (except

insofar as 1t affects performance and the total storage capacity
available for data).

In addition to using the dedicated equipment at CCA, it is
planned that datacomputer service will also make use of
hardware resources located at NASA/Ames, using CCA software.
The two sites will provide mutual backup for one another,
thereby guarding against acclidental loss of data and providing
for satlsfactory uptime of the overall service.

1.2 Status of Project
During this reporting period, Version 0/10 of the datacomputer
system was completed. This 1s the second major version of the
system to offer datacomputer services on the Arpanet. Version
0/10 has replaced Version 0/9.7, which was an "intermediate"
release. Version 0/10 handles non-ASCII and variable-length

data. It has file-level access regulation. (See chapter 2 and
Appendix for detalls.)

A

e N .-

-~ > - -
. . o . . .
JL S e . ‘i ~ L Pt

LR ks -

PRIMARY
STORAGE
MEMORY BUS
SECONDARY SYSTEM TERTIARY
STORAGE PROCESSOR STORAGE
1/0 BUS
IMP
INTERFACE PERIPHERALS
iMP

ARPANET

Figure 2. Hardware Overview of System

-4~

ar e

!
!

b

RS T SCORY

2

PUEGI SRV

"
0 -
- > -
- P . < L]
. L XN - . ol
i O g e e N . L e eI e g, o
- #
¢ 5
g :
M
ME10 ME10 ME10 ME10 ME10
r MEMORY MEMORY MEMORY MEMORY MEMORY
. (18x) 116K) {16K) {16K) (16K)
E MEMORY
8us z
1 1
DF10 DATA TENEX
CHANNEL r—1 PAGER
RP10 DISK
PACK CONTROL eeal L xsmss
PROCESSOR CONSOLE
4
3 ¢—1 RPO2 DISK
RPO?2 DISK — Toio TUS6 DUAL TUS6 DUAL
PRl OECTAPE DECTAPE
L1 RPo2 DISK
RPO2 DISK
| reo2 oisk BA10 LP10 LINE
X —] controL PRINTER
- 2 .
g P
DC10A DATA P
L} Line scanner | .
CONTROL b
DC108B o«
:Is' DCAO NC. DATA vT06 -
LINE :
Ginoue TERMINALS
TM10A TAPE UNJ
P
‘ - CONTROL —
CHANNELS LC
, ———————
CALCOMP h TERTIARY |
1030 STORAGE '—————d TU8
INTERFACE MAG. TAPE
. > o emad
! 1 — e e—
CAaLCOMP | TERTIARY
‘ DUAL STORAGE
! Dis —— o o IMP10 303 ARPA
. e EACE MODEMS NETWORK
TP .
Yare L oauue
MOOEMS LINES

Figure 3. Hardware Block Diagram - CCA Installation
(Equipment in dashed outline 1is planned for 1975)

-5~

The project continues on an-increasing scale to interact with
actual and potential datacomputer users. New user programs
have glven us more operational experience with the system.
Much attention 1s being paid to the seismic community, the
weather community, and other users to determine theilr data-
computer requirements and adjust the implementation priorities
accordingly.

Currently only disk storage is available to the system. A
Calcomp Dual 230 disk was installed during the fourth gquarter
of 1973. A second Calcomp Dual 230 disk will be added later
in 1974. This will bring the total CCA storage capacity to
about 4 billion bits. Flans call for the addition of large
tertlary storage in 1975.

PP N

Y SR

2. Software Implementation

During this reporting perlod, Version 0/10 replaced Version
0/9.7 as the system offering service of the Arpanet. The new
features of 0/10 are summarized in this section. (See

Appendix, "Datacomputer Version 0/10 User Manual" for details.

Specifications and implementation of Version 0/11 were begun.

2.1 Request Handler
Data Description. The datalanguage user must supply descrip-
tions for all data, whether 1t 1s data being transmitted to
or from the datacomputer (port description) or data being
stored at the datacomputer (file description). The data may
be tree-~structured. The simple data types handled by Version
0/10 are 7-bit ASCII, 8-bit ASCII, and uninterpreted bytes
or byte strings (with a user-specified byte size less than or
equal to 36). Variable-length data may have either a one-
byte preceding count, a one-byte delimiter, or, if 1t is in
a port, a trailing "punctuation” character (i.e., end-of-
record, end-of-block, or end-of-file marker).

The previous restriction that a file or port must be a list
has been lifted. Also lifted is the size restriction that
Inner containers (i.e., containers inside of files or ports)
must be less than 2560 characters,

The data description facilities in Version 0/11 will be the
same as in Version 0/10.

Data Operations and Access Methods. In Verslion 0/10 the user
may store flles, retrieve files, replace files, and append to

files. The user may also retrieve subsets of a file specified

by boolean expressions on multiple variables. In retrieving
or storing data, the datacomputer can also reformat it.

"L R,

e
R | 2 P p—

-~ 'n}‘-}. PRV

)

-

Unlike earlier versions, 0/10 allows members of inner level
lists to be used in boolean expressions. (This is sometimes
called a keyword feature; 1t allows an attribute -- or
container, in datalanguage terms -- that occurs several times
in one contalner with different values to be used in a
retrleval specification.) Members of inner level lists may
also be inverted. However, only EQ can be evaluated using
the inversion; evaluation of NE still requires sequential
search of the data.

Version 0/11 will introduce a rudimentary updating capability.
Replacement of uninverted fixed-length containers will be
possible. This includes fixed-length containers that are

inside of variable-length containers.

In addition to specifying a set of containers by content, in
0/11 the user will be able to specify a set of contalners by
position in a 1list, called the index number of the list

member. The set specification may be used either for retrieval
or for updating.

In order to allow efficient retrieval of varilable-length
containers, the auxlliary structure, called a Contailner
Address Table (CAT), will be implemented. The CAT provides
a mapping from index number or internal record number to
logical address. It can be used both for indexed and
inverted retrilevals.

Data Privacy. Verslon 0/10 has directory-level access
regulation, that 1is, regulation at the file level and higher.

The classes of users are defined by knowledge of passwords,
by host, and/or by socket number. The privileges to be
granted or denied are read, write., append, login, and control
of privileges.

N e

e déi: aff‘k’gw‘

boe

e

23

2.2 Services

Version 0/10 supports multiple volumes. Thils allows the
datacomputer to use both of the CCA 3330-type spindles for
storing datacomputer files. These disks are treated as

"special disks", not as part of the normal Tenex page space.

A utility routine that dumps datacomputer flles to magnetlic
tape was added. It can run as a background job without
interfering with datacomputer services.

T g

Am

1 W e A

L e

Ce
R A

-

3. Network Services

3.1 User Programs

S EEERC.. - ool

The datacomputer 1s accessed by user programs which run on
other hosts on the Arpanet and send datalanguage requests to
the datacomputer. 1In order to galn operational experilence

| with the datacomputer and the problems assoclated with using
| it, and in order to facllitate usage of the datacomputer
system, CCA has written a number of user programs.

During the previous reporting period, two such programs were
written: SMART, which generates datalanguage for users at
terminals, and FORPAC, which provides an interface between

P RN TR - T T

Fortran prosrams and the datacomputer. Based on our experience
with these two programs, a set of standard subroutines (DCSUBR)
needed for communication with the datacomputer were specified
and implemented. There are routines to set up network %
connections, send datalanguage, send data, read data, and the
like. Written in Macro-10, DCSUBR serves as a model for
similar programs to be written for other machines.

One of the user programs to incorporate DCSUBR is RDC (Run
Datacomputer). RDC provides convenient terminal access to
the datacomputer from a Tenex host. Datalanguage 1s trans-
mitted from elther a teletype or from a local Tenex file,
and datacomputer responses are displayed.

At the user's request, RDC will set up a secondary network
connection as a data path to or from the datacomputer. This
allows for transfer of non-ASCII data (not accepted over the
datalanguage port) and 1t results in more efficilent data

| transfers over the network. Unlike other user programs, RDC

does not generate dathlanguage; rather it gives a person a
‘ way to submit his own datalanguage. (The only exceptions

‘ -10~

are the datalanguage CONNECT and DISCONNECT statements.) [
RDC has been useful for debugging and for setting up new data

|
bases. {

] A second program to utilize DCSUBR is DFILE. DFILE, which
b . runs on any Tenex host, allows local users to archive their

files on the datacomputer. The user, from his terminal, can

.o . assoclate attribute-value pairs with hls file, and, later,
5 : ? retrieve the propcr files based on boolean combinations of
ﬁ | these pairs. DFILE may be used advantageously for files
) : ‘ whose usage is not limited to a single host or for files

‘ which are public and meant to be distributed. The attribute-~

e PN e n

}' ' value pairs give the DFILE user a way of browsing through the
| DFILE database to [ind out what files are available.

3.2 User Statistics
The following chart indicates the number of times each
network site has connected to the datacomputer in the present
reporting period. During the period March through May, both
Versions 0/9.7 and 0/10 were available over the Arpanet. The
figures for thls period iridicate the changeover from one
version to the next.

o y ’ 3 ;
"‘T e - a——— - -

January
February
March
J C0/9.7
0/19

SR IR SN

April
0/9.7
0/10

4’,"3.\.

May
0/9.7
0/10

June
0/10

Total CCA
419 160
1323 143
1002 323
15 _15
1017 338
956 284
391 350
1347 634
789
1142 712
1931 758
995 s544

Number of CONNECTS to CCA
Datacomputer System - 1974

MIT--DMS Harvard Other
64 150 45
1005 118 57
457 149 73
381 174 117
20 0 _21
4o1 174 138
517 200 26
166 191 _53
703 391 79
160 168 123

-12-

-4

. E———. . I m -

el %k A

Y
di

b 1 b

ey
JEES S—

PR

. ’1\‘ !E 1.

APPENDIX
Working Paper No. 9
"Datacomputer Version 0/10 User Manual"
June 1, 1974

;
3
u %
f £
) 'g
f
{
r' 4
;
" -1
— esewry

Datacomputer Version 0/10 ?

|

{ | k{

- W

e

FIRGR IPY - LT N

.,
vt

Datacomputer Project
Working Paper No. 9
June 1, 1974

Contract No. MDA 903-74-C-0225
ARPA Order 2687

~

Computer Corporation of America
575 Technology Square
Cambridge, Massachusetts 02139

b umea——

.,_‘_ ¥

B

Datacomputer Verslon 0/10

f User Manual

g —
-

Y. v AOE S (

*»

b

Computer Corporation of America

b o i s M uliliNie ST vk

1 June 1974

. i o ST ORI B TR

b
4

L
'

Table of Contents

1. Introduction to the Datacomputer . . . « + « o ¢« « o o« 3

1
2, CoNtaAlinNers . « 4 o « o o o o o s o o s o o o o o 9 o o b 1
CONLAINersS « « « o ¢ o« s ¢ o o o o o s o o o s o o b
Outermost ConNtalnNers . « « o ¢ o o o o o ¢ o o« o« o U
The DIrectory « « o o o« o o o o s o o o o o o o o o6
_ Pathnames . « « « « « o o o o o o o o o o o o o o o7
' Creating Nodes « + « ¢ « ¢ ¢ o o o o ¢« o« o o o o o 1
A Creating Containers . . « « « ¢ « ¢ ¢« o« o o o o« « o8
i 1
\ 3. Directory Commands . . « « « ¢ o o o o o« o s o o o o o413
E OPEN. [] L] L] L] L] - [] L] ® L] L] * - L2 . . L] L] 13 o d
i: MODE. * L] . * L] . . L] L] L] . L] . L] . L * L] L] - ® £] lu '
: CLOSE & & & ¢ ¢ ¢ o o o o o s o s o o o o o o o o« 18 =
! DELETE. v v v ¢ o o o o o o o o o o o o o o o o o 14 :
i LIST e & ¢ & o o o o e o o o o o o o s o ¢ o o o o 15 ;
r -
b, Security and Passwords . . . « « ¢ « ¢ o o ¢ o o o o o17
i Introductory Concepts « « + o « « « o o o o« o « o« 17
Gaining Access to Nodes: LOGIN « « « .17
Privileges . L] L] L[] [] L]] L] L] . . L] L] L]] L]] [* .18
Privilege Block e e o s o o o s o o & 19
User ldentification Flelds e o o e e o s e s o o 20
Privilege Set Specifications . « « ¢« « ¢ ¢« ¢« « o« .21
User Classes . . . e o o s o o o« «23
Creating Prlvllege Blocks. CRFATEP e o s s s o 24
Deleting Privilege Blocks: DELETEP. . . . « « « . 27
Example . o o ¢ o ¢ o o o o o o o o o o o o s o o 28
5. Asslignment and FOR=-LOOPS. « « o+ + & o« s e e o o « 31
Assignment Involving Outermost Contalners e o o o 31
The Matching RUTES « ¢ &« ¢« o ¢ ¢ o o o o« o o o » o3
Padding and Truncatlion . « « « ¢« o o o ¢ o o o o ¢32
Examples . . . e o o o o e s s o o o & 433
Selection of LIST Members. e o o o o o o s o s o <36
Retrievals Using Inner LIST Members 37
Retrievals Using Inverted Contalners .,39
Assignment With FOR . + & ¢ o ¢ o o« o o ¢ o o« o« o+ W0

6. Using the Datacomputer . .. « « ¢ o o« o« ¢ o ¢ o o o » 43

!
,L.':==: —

L ke g A

Page 2

Appendices
A: Summary of Datalanguage Syntax.52

B: Reserved Words. v v ¢« +« v o o + . 65

C: Inversion: Technical Considerations66
D: Network Interaction with the Datacomputer , .69

E: Impleméntation Restrictions71 : ‘

F: Differriices setween 0/9 and 0/10.75

o R Bt e

H

Lo B

ix

- N

oo
+

] I
¢ |
|
b ‘
4
1)
1%+ SR
1' f—— -y
-i'—m: —

“-_O:q

3

Page 3

Chapter 1: Introduction to the Datacomputer

dntroduction

The datacomputer is a shared large-scale data utility
system designed to serve the computers on the ARPA network.
It may be thought of as a "black box" that performs data
storage and retrieval functions Iin response to commands
phrased in a standard notation, called datalanguage.

This document describes the currently-running version
of the datacomputer software, and includes information abhout
how a wuser program can access the system, transmit
datalanguage, process the datacomputer's responses, and
transmit and receive data over the network.

The datacomputer in its full implementation will
provide an on-line storage capacity of one trillion bhlts and
an extensive set of services to user propgrams, (1) The
present version 1is a preliminary version, providing a
limi ted amount of storage and a restricted set of user
functions. Subsequent versions will progressively enlarge

the range of services and the amount of storage available
for users,

(1) See Datacomputer Project Working Paper No. 8, Further
Ratalanguage Deslgn

, December 1973.

oA g5 A D & A 1S e

-

N

. p—ee]

b W
1' - T .
-t . ° \A
4 I
3
! Pare b
Chapter 2: Containers |
g
] Lantainers -
The gontalper is a basic concept in datalanguage. A
container is an Imaginary box which, 1ike a FORTRAN
, variable, may contain data; a contalner may also enclose
other contaliners. For example, some information about
peoplte could be represented as:

“n

!
|
: PEOPLE
PERSON PERSON)
NAME ADDRESS SOCSECNO NAME
FIRST LAST STREET CITY STATE FIRST

S b o ok ek i

DATA
DATA
DATA
DATA
DATA
DATA

Figure 2-1. A container structure

Here PEOPLE, PERSON, NAME, and ADDRESS are containers
enclosing other containers; FIRST, LAST, STREET, CITY,
STATE, and SOCSECNO are containers that enclose only data.

The description of a contalner has several parts. It
includes the contalner's ident, type, and size, and perhaps
some additional attributes. The contalner's ldent, or
simple name, Is a string of 100 or fewer letters, diglits or
the special character %, by which datalanguare requests
refer to the contalner. The first character of an [dent
must be a letter or the character %. Certalin reserved words
may not be used as container idents; these are listed in
Appendix B of this document.

Y
-

Some sample lidents are:

}
i - PR W e

L

T —

i

Chapter 2: Containers Page 5

AVERYLONG!IDENTABCDEFGH | JKLMNOPQRSTUVWXYZ
PEOPLE

WEATHEROSTAT I ONS

%CCA

Containers are of four types, depending on their
contents.

A contalner that is a LLSTI contains some number of
other containers. The LIST-members may be containers of any
data type, but they must all have the same description.
PEOPLE (above) is an example of a LIST.

A container that is a SIRUCT, or SIRUCTURE, contains
some npumber of other containers, which need not have
Identical descriptions.(1) The descriptions of all the
containers that are enclosed by the STRUCT form part of the
description of the STRUCT itself; and on every occurrence of
the STRUCT every one of its sub-containers must appear in
the same order. ADDRESS is an example of a STRUCT,

A container of type BYIE contains one byte of data. A
container that is a SIR or SIRING contains a string of
bytes.(2) FIRST Is an example of a STR. The wuser can
specify the byte size of BYTEs and STRs and can indicate an
interpretation of 7- or 8-bit ASCI! or uninterpreted (See
below).

A LIST or STR has a glze assocliated with it. The size
may be fixed or variable. The size of a STR is the numbher
of characters in it, while the size of a LIST is the number
of elements in the LIST.

Qutermost Containers

A contalner that [s not contained by any other
container Is called an gutermost gcontajiner; outermost
containers are different in several respects from other
containers.

An outermost container In datalanguage has a
which 1is either FILE, PORT, or TEMPORARY PORT (which may he
abbreviated TEMP PORT). A FILE contains data kept 1in the
datacomputer. When a FILE 1is created (see below),
datacomputer space is allocated for it. A PORT describes
data that 1is transmitted to or from the datacomputer. A
TEMP PORT is a PORT whose description is not permanently

--------- - e e e e e e e e e

(1) STRUCT and STRUCTURE are synonyms in datalanguage.
Hereafter, STRUCT will normally be used.

(2) STR and STRING are synonyms in datalanguage. Hereafter,
STR will normally be used.

A AT PR S L el e — e AR ERT. SRy P o > YT ARy

.

A

Chapter 2: Containers Pare 6

stored, unlike the descriptions of other containers. TEMP

PORTs vanish at the end of the session in which they were
created.

The Directory

The ident of an outermost container, whether it 1is a
FILE or a PORT, 1is uniike other idents, in that it is
entered in the datacomputer's diregtorv. The directory Is
conceptually a tree; the entries in it are called nodes. A
node may have one or more subordinate nodes, unless it
represents a container, in which case it cannot. A portion
of a hypothetical directory Is diagrammed below; it may be
read as indicating that the nodes F and G are subordinate to
DATA, which in turn 1Is subordinate to CCA. Only the
bottom-most nodes Iin this tree, F and G, may represent
containers, and they represent outermost containers.

CCA

DATA

Figure 2-2. A portion of the directory.

Only a bottom-most node of the directory may be a contalner

ident; only an outermost container has Its ident entered In
the directory.

Normally, the first thing a user does after attachling
to the datacomputer is log In to a directory node, For most
purposes, he only sees his login node and the part of the
directory that is subordinate to his login node. (The LOGIN
request is discussed in detail In Chapter &4.)

.
¢t

D 3 M,

Chapter 2: Contalners Page 7

Pathnames

Pathnames are used to reference nodes In the directory
tree by describing a path through it. They have the general
hierarchical form

NODE1.NODE2...NODER
where NODE2 is a node directly subordinate to NODF1,

There are several varieties of pathnames. The two
classes of directory objects referenced by pathnames are
closed nodes (including all nodes that are not outermost
containers and all outermost containers that are not OPEN)
and OPEN outermost containers. There are three areas In
which names can be found: the TOP, LOGIN, and OPEN contexts,
Thus there are six possible pathname types, only five of
Yhifh)are reasonable. (A closed node in the OPEN context

sn't.

Closed nodes can be referenced either by a complete
pathname (started with the reserved word %TOP), which causes
the name search to be anchored at the top of the dlrectory
tree, or a LOGIN pathname, which anchors the search at the
current LOGIN node. Either pathname may contaln passwords,
(Passwords are discussed in Chapter 4.)

OPEN nodes may be referenced by a simple complete
pathname or a simple LOGIN pathname, neither one of which
can contain passwords, or by an OPEN node simple name. An
OPEN node simple name 1is the name of the outermost
container.

Creating Nodes

A node in the directory 1is created with a CRFEATF
request. Such a request has the form

CREATE <pathname> ;

Only one node may be created by a single CREATE request, and
a higher-level node must always be created before one
subordinate to it. The reserved words listed In Appendix B
may not be used as directory node names.

As an example, let us create the outermost container F,
a LIST of u-character strings; the container's ident will be
entered in the directory as indicated iIn Figure 2-2, We
assume that nothing 1is presently in the directory, so we
must start by creating the topmost node.

AR I w5 A

‘:“'—‘v""‘

Chapter 2: Containers Pare 8

CREATE CCA;

CREATE CCA.DATA;

CREATE CCA.DATA.F FILE LIST
FOO STR (4) ;

Now that CCA and CCA.DATA have been created, we could
create CCA.DATA.G with only one CREATE request; i.e.

CREATE CCA.DATA.G PORT LIST etc.

Lreating Containers

Outermost containers are created by a more complicated
form of the CREATE request. The CREATE statement must tell
the datacomputer all about the container, for example, Its
ident, function, size, and data type are included. An
outermost container and all 1{ts subcontainers must be
created at once, with one CRFATE request.

The CREATE request causes the description to be stored.

It al-., causes space to be allocated If the container s a
FILE.

The full BNF in Appendix A indicates succinctly the
precise syntax of the CREATE statement. |t is worth loob!ng
at a few examples before looking at all the dstails of
descriptions. A LIST of STRings:

CREATE ALPHA FILE LIST SUBCONTAINEDSTRIMNG STR (u44) ;

Here the size of the outermost LIST 1[is omitted, so the
datacomputer will calculate a default size.

A LIST of STRUCTs, each of which contalns three
strings:

CREATE BALLTEAM FILE LIST (25)
PLAYER STRUCT
NAME STR(20)
POSITION STR(2)
UNIFORM%NUMBER STR(2)
END;

The datacomputer will allocate enough space for the file
BALLTEAM to hold 25 copies of the STRUCT named PILAYER, Note
that END is required to terminate the description of the
STRUCT.

The example diagrammed on pare Uu:

CREATE PEOPLE FILE LIST
PERSON STRUCT

R R

AWk

1

b
)
>
2
3

Chapter 2: Containers Page 9

; NAME STRUCT
FIRST STR(15) |
LAST STR(15) |
END
ADDRESS STRUCT f
STREET STR(15) l
CITY STR(15)
1 STATE STR (15)
| END
SOCSECNO STR(10)
, END;

Lad

i3 Y.

The elementary data types are BYTE and STR. Contaliners
of these types contain data, not other containers.

S STRings and LISTs must have a size. For STRings, the
size is the number of bytes in the STRing. For LISTs the
size is the number of LIST members (e.r. the number of
PERSONS in PEQOPLE above.) The three forms for indicating the
size are:

LR Y R N S T

B

(n) -- a fixed size of n
(m,n) -- a minimum size of m and a maximum of n
(,n) =-- a minimurm dimension of 0 and a maximum of n

where m and n are positive integers.

For an outermost LIST or STRing, no size need be
specified, The default minimum 1is 0, and the default
maximum is based on what will fit in the default space
; allocation.

The datacomputer needs a way to find the end of the
data In variable-sized LISTs and STRings. The three options
, are a preceding count, a trailing character, and punctuation
5 (i.e. a device-dependent marker). A one-byte preceding
: count is indicated with the keyword parameter

A ,C=1

Version 0/10 cannot handle counts larger than one bhyte,
Thus, {f there is a count, then the maximum dimension must
i be small enough to fit into a one-byte count. (Byte size is
discussed further below.) The value of the count does not
i include the count byte itself,.

The syntax to indicate that there Is a one-byte
delimiter is

,D=n
or
[
—_ | A A S s e s AP S S RS
! e - — - -.‘ ...,‘ —_— -—
s ——— ——e e —

Chapter 2: - Contalners Page 10

,D"a'

where n is a decimal number and a 1is any ASCII number,
letter or special character.

The datacomputer considers punctuation to be different
from delimiters. Punctuation over the network Is a speclal
character (specifically EOR, EOB, or FOF) Iinserted 1In the
data but not considered part of the data. This is indicated
by

» P=EOR

.P=EOB
and

,P=EOF

A fixed-size contalner (including a STRUCT) may have a
P, D or C parameter, but no container (fixed or variable)
may have more than one of these,

A datacomputer FILE can be punctuated, but none of its
sucontainers can be. The FILE punctuation defaults to FEOF,
Variable~length subcontainers must have either a C (count)
or D (delimited) parameter.

If a variable-sized PORT does not have a P, D, or ¢C
parameter, then it defaults to P=EQF, Variabhle-sized
subcontainers of a PORT default to P=EOR.

Punctuation 1Is hierarchical. A contaliner that |Is
punctuated with FEOR cannot contain one that is punctuated
with EOB or EOF., A container that is punctuated with EOR
cannot contain one with EOF., |If higher punctuation Is found
in a data stream where the datacomputer is looking for lower
punctuation (e.g., an EQOB .'"ere an EOR is expected), the
higher punctuation implies the lower.

(1) Note that the default punctuation for PORTs is different
from what it was In Version 0/9. Conslider the description

CREATE P PORT LIST
R STRUCT
A STR (1)
B STR (1)
END;

FOR VERSION 0/9 EVERY R MUST END WITH AN EOR. In Version
0/10, since R is fixed-size, no EOR's are expected, and an
error message Is output If an FOR or EOB is found. If R's
end with EOR, then

,P=EQOR

should be added to the description of R.

I

e L

JRIRRII-# SRR et v e

e Y WG ciim.es o e -

~-WI L& ~N
I.
o«
-,

B

Chapter 2: Containers Page 11

The interpretation of a STR 1Is one of ASCII (i.e.

7-bit ASCIIl), ASCt18, or BYTE, as In the followling three
examples:

A STR ASCIt (5)
P STR ASCI18 (1,10), C=1
WALDO STR BYTE (73)

The default byte size for BYTE is 36 bits. BYTE is optional

if the byte size is given explicitly with the keyword
paramter

,B=n

where n is a positive integer less than or equal to 36. The
+,B=n option may not be used for ASCit STRings. If no byte

size or interpretation is gliven, then the STR 1Is 7-hit
ASCI!.

At times the datacomputer needs to fill in a value or a

part of a value. The user can specify a fill character
thus:

’Fslal

or
F=n

where a is an ASC!| character and n is a decimal number,
The default fill character is blank for ASCYi data and zero
for non=-ASCII data.

Note that a byte size and a fill character can apply to

a STRUCT or a LIST as well as a STR or a BYTE. Consider the
following:

CREATE F FILE LIST
R STRUCT, B=36
A STR (5)
END;

The byte slize of A Is 7, A takes up 35 bits., There Is one
"unused" bIit after A before the next R. Thus, R must be
filled. Even though the data (l.e. A) 1s ASCIt, R s
non-ASCll because |t does not have a 7-bit hyte size,
Hence, the default filler of 0 Is used for the bit,

The rules for punctuation, byte size and flillers are

simple but not at all Intultive. In general, speclfying
punctuation rather than relying on defaults helps avold
errors. Also

LIST <pathname> %DESC;

ek

“ A;‘M-L -

-

! Chapter 2: Contalners Page 12

will output a complete description, including all default
lengths, dimensions, punctuation, byte sizes and fillers,
(The LIST command Is discussed more fully below.,) It s
i often Instructive to look closely at the %DESC to see where

it Is different from what the user expects.

e SR

‘ BYTEs and STRings that will frequently be used for
{ retrieval may be inverted. For memhers of outer LISTs, the
; option

»,1=D

Is used. for members of inner LISTs, the option

! =l

is used. tnversions and the difference between outer 1list)
members and inner 1list members is discussed more fully in i
the section on WITH,

[E)

Page 13

Chapter 3: Directory Commands

QPEN

Before data can be input to or read from a FILE or
PORT, the container must be gpen, and a mode must be
specified for it, The mode of a FILE or PORT, which is set
when the container 1Is opened, determines the legality of
various operations on that container.

Mode is one of READ, WRITE, or APPEND., Data can only
be transmitted out of a FILE or PORT that is open in READ
mode, but elther out of or Into a FILE or PORT that Is open
in WRITE or APPEND modes. The difference between WRITE and
APPEND lies In thelr treatment of any data that 1Is already
in the container when it is opened. When an assignment Is
made to a container that was opened in WRITF mode, any data
it contained previously 1Is thrown away, but a contalner
opened In APPEND mode has newly-arriving data written after
the end of any already-present data, which 1Is thus
preserved,

A variation of WRITE and APPEND 1Is WRITE DEFER and
APPEND DEFER. When DEFER [s indicated as part of the mode,
a more efficient technique of updating the Inversion s
used.

When a FILE or PORT is created, it is opened in WRITE
mode. A FILE/PORT that already exists may be opened wlth an
OPEN request:

OPEN <pathname> <mode) ;

which specifies the name of the container that 1is to be
opened and the mode of opening. The name can he elther a
complete pathname (started with the reserved word %TOP) or
it can be a login pathname, started with a node immediately
subordinate to the current login node. The mode must he one
for which the user has privileges (see Chanpter 4)., The mode
argument may be left out of an OPEN statement, in which case
the container Is opened 1In READ mode If It Is a FILE and
WRITE mode if it Is a PORT. Two outermost contaliners wlth
the same ident may not be open at the same time.

For example, to read data that was previously stored In
CCA.DATA.F, a file, elther

OPEN CCA.DATA.F;

AL ST

3 L Al st L AT,]

'i"
-
Ld

=

3 W wee

1.

NG B

v oare

Chapter 3: Directory Commands Page 14

or, if the current login node is CCA,
OPEN DATA.F;
WILL OPEN F PREPARATORY TO DATA TRANSFER RFQUESTS.

MODE

The mode of a container that is already open may be
changed with the MODE statement:
MODE <(paragraph> <mode> ;

The pathname can be a simple complete pathname (l.e. a
complete pathname with no passwords), a simple login
pathname, or a node name.

SLOSE

The complement of the OPEN request |Is the CLOSE

request. When you have finished using an open contalner,
close it with

CLOSE <pathname)> ;

where pathname must be the simple pathname of an open
container. Closing a FILE/PORT with a function of TEMPORARY
PORT has the effect of deleting 1its description from the
datacomputer.

DELETE

The ability to delete directory nodes s wuseful in
maintaining a data base at the datacomputer. The DELETE
request allows one to delete one or several outermost
containers and all the data they contain.

DELETE <pathname> ;

causes the node named by <{pathname> to be deleted from the
directory. The pathname must be the login pathname. Thus,
only nodes subordinate to the login node can be deleted.
The node cannot have any subordinates.

DELETE (PATHNAME> ** ;

deletes the node and all subordinate nodes. I|f any of the
deleted nodes are outermost containers, the container
descriptions and any associated data are deleted as well,
The DELETE request need not be used on TEMPORARY PORTs, as
they are automatically deleted elther when they are closed,

el

L BRASEE

~g—— e

o

Chapter 3: Directory Commands Page 15

] or at session end.

If the data stored in FILE is to be deleted, but the o
container description itself retained in storage, the DELETE |
request cannot be used. Instead, CREATE a port B with a
description matching the contalner A that is to be emptied, {
and execute the assignment A = B with no data iIn B. the s
effect of this assignment Is to delete all the data from A,

LIST

1 The LIST request Is the means by which the user '
i interrogates the datacomputer about his environment. The

; request has two arguments: the node or nodes which are the

! object of the Inquiry, and the type of information desired.

|
|
|

The first argument conslsts of a set of nodes in the
directory. Possible node sets are: 1) a single node, 2) all

T
g 1o e

i nodes directly subordinate to a given node, 3) a node and - 1
i all its subordinates, and 4) all open files and ports. A :
single node Is specified with @ ful! pathname, which can
Iinclude passwords and can be anchored at the top node
(%TOP). The set of a node's direct subordinates Is
indicated with elther a "+" (the login pathame Is implicit)
or a full pathname followed by a "+"., Either "++" or a full
pathname followed by a "#*" designates a node and all (ts
subordinates. The set of all open nodes 1is referenced by
Z0PEN. %TOP alone defaults to ETOP.#+,

Y]

There are five kinds of available informatlion. These
are: 1) node names and related data (node type, privileges,
and possibly mode and connected argument), 2) parsed data
descriptions (of FILEs and PORTs), 3) original source text
of data descriptions, 4) allocated space (for FILEs), and 5)
privilege blocks associated with nodes. These information
options are specified by $NAME, %DESC or %DESCRIPTION,
%ZSOURCE, %ALLOC or %ALLOCATION, and %PRIV or %PRIVILEGE,
respectively., The default option is ZNAME.

Not all of the kinds of information are available for
all of the possible node sets, The options that are
available are:

Node Set Option {

<{pathname) %2DESC

<{pathname> : INAME

{pathname> 2SOURCE

{pathname> $LALLOCATION

{pathname> $PRIVILEGE

<{pathname) .+ ENAME

{pathname) ,#* INAME
: 1

|

A n_j!!!--f:-----» 1-1::-QF-T-:::HQFT . —— ——meme— |

- . e

Chapter 3: Directory Commands

{pathname) . **
30PEN
30PEN
%O0PEN
20PEN

Page

%SOURCE
SNAME
ZDESCRIPTION
%SOURCE
ZALLOCATION

16

ok RIS

PUSENEN P

Chapter u4: Security and Passwords

dntroductory Concepts

The 0/10 version of the datacomputer provides file-level
security (restricted access to nodes and attendant data) by
means of a system of privilege blocks, described in the
following sections. One or more (or no) blocks may be
associated with a particular node. Each privilege block
defines a class of ysers who may be glven access to the node
and the set of privileges to be granted to such users,
Whenever a user attempts to access a node or file, the
datacomputer will scan that node or file's privilege
block(s), if any, to ensure that the user is 'lezal' and to
determine what privileges will be allowed.

Lhapter Organization

This chapter is divided into three principal nparts, The
first sections describe what privilege blocks are and how
they provide file security functions for datacomputer users,
and introduce the reader to the security features of
datalanguage. The second part completely speclfies the
datalanguage needed for creating, deleting and manipulating
privilege blocks, and completes the description of thelr
components begun in the first part. The third sectlon
offers several examples of how to add, delete and 1look at
privilege blocks.

Gaining Access to Nodes: LOGIN

Every node in the directory has certain privileges
associated with it. For example, the ablllity to create
inferior nodes, or to read or write file data, are
privileges which may be granted or denied to a particular
node. When a user initially connects to the datacomputer he
Is automatically connected to the top node of the directory
tree (%TOP), and he (i.e., the %TOP node) Is granted minimal
privileges, To acquire more, he must log in to some node,
which Is called, curiously enough, the login node.

Logging into this node establishes the user's Iidentity for
subsequent pathname references (1). 1t should be kept in

(1) tn addition to establishing a user identity for
privilege purposes, logging In performs various accounting
and pathname context functions.

Y

v et .
EREeLe BV S

Dol

PRz

Y I — ey e — —

Chapter U4: Security and Passwords Pare

mind that a user is identified to the datacomputer gonly by
his login node. Thus, throughout this chapter, the terms
fuser~-id' or 'user name' are to be understood to mean
nothing more than the full pathname, including the speciflied
privilege block (if any) at each level (2), of the node to
which the user has logged-in.

Whenever a logged-in user references a node, the login
pathname is compared against the user-id field of every
block in the node's privilege block 1list. 1f a block s
found whose user class description includes the pathname of
the login node, the privilege-set described by the block
will be added to (or taken away from) the privilege set
already given to the login node.

Privilezes

Privilege set specifications come in two flavors: privileges
to be granted (added) to the node and privileges to be
denied (taken away). If a privilege is not specified (as
either grant or deny), then that privilege (or denial of it)
is passed, unchanged, from the superlor node to its
subordinate. At each node level, the deny hits specifled in
the given privilege block are NNT-AND'ed with the privileges
of the superior node. Then the grant privileges are OR'ed
with the result, to yield the privilege set for that node,

It is Important to understand that privileses may be added
and taken away at everv level of the pathname, For example,
suppose the login node has the privilege set <CLWA> (3), and
a subnode's privilege block specifies: grant read privilege
(G=R), and deny write privilege (D=W)., The result at the
subnode would be the final privilege set of <CRA> (u).

(2) Pathnames may be gualified or unaualified. A aqualified
pathname 1is one containing password strings for the purpose
of gaining particular privileges upon opening the node,
e.gc’

NODE1('PASSWORD1') .NODE2,NODE3('PW3')

is a pathname qualified at the first and third levels by the
passwords 'PASSWORD1' and 'PW3', respectively. The pathname
NOOE1.NODE2.NODE3, on the other hand, Is unquallfied, Prior
to Version 0/10, all pathnames were unqualified.

(3) This Is a shorthand way of saylng 'this node has heen
granted control <C>, 1login <L>, write-to-flle <W> and
append-to-file <A> privileges. Specific privileges are
described in detall below.

18

W b GRS

NI lgays

J—

Chapter 4: Security and Passwords Page

Note that a node can never look at, modify, or affect a
superior node in any way not possible at the leve) of the
superior. That is, If a user cannot look at the privilege
blocks for a node, he cannot acquire that privilege for that
node from an inferior one. However, an inferior node may
well have privileges relative to its subnodes that its
superior does not have relative to Its subnodes. For
example, scanning along the pathname A.B.C.D.E...., A.B.C
may have only read privileges, but does not have write
privilege. Now, the node A.,B.C.D may be granted wrlite
privilege at 1level D (thus awarding A.B.C.D read/write
privileges), this does not affect A.B.C. 1t still has only
read privilege.

Privilege Blogk

Privilege blocks are data structures which define access to
nodes, Each privilege block 1is assoclated with one
particular node. Any node in the directory, including ports
and file, may have privilege blocks defined for them. A
node may have any number (including zero) of privilege
blocks. When an attempt is made to access a node which has
privilege block(s), those blocks are scanned for a user-id
corresponding to the current login pathname and for a
password string matching that supplied by the user in the
request referencing the node (e.g., LOGIN, OPEN, DELFTE,
etc.). If a match is found, the matching block's privilege
set bits are examined and the appropriate privileges are
granted/denied the node. The matching algorithm is
described below in more detail.

Each privilege block can contain:
user name
host name
socket number
password character string
grant privileges
deny privileges

Each of the above fields falls into one of two categories:
1) a description of the group of users which may access the
associated node; and 2) the privileges to bhe granted to
these users,

The privilege block is completely specified at the time it
is created. When a node is referenced, only the password
string, If any, Is required; the user-ld (including host
name and socket number), has been retained by the login
process.

(4) The login privilege Is not propagated to subnodes. It
applies only to the node for which it is explicitly granted.
See below.

19

Chapter 4: Securlty and Passwords Pare

Privilege blocks are created by the datalanguage command
CREATEP. They are deleted by the command DELETEP., Existing
privilege blocks may be displayed via the LIST nodename

$PRIV(ILEGE) command. The full syntax of these commands |s
described below.

User ldentification Fields (User-1D)

The user identification fields include some or all of the
following: a valid login pathname or a class of login
pathnames, the number of a host computer, the datacomputer
socket number, and a password character string. These
flelds are discussed in more detail In the following
sectlons.

Host

The host name is an optional field. |f specified, (it must
be a decimal number from 1 to 255 designating the number of
the host computer. The host name cannot be a number greater
than 255, or less than 1. It cannot be a character string,
except for the special cases LOCAL and ANY.

LOCAL host indicates that the user should not have connected
to the datacomputer via the ARPANET. Effectively, this
means (at this time) that the user is located at CCA and s
connected to the datacomputer via a local terminal.

The host name may also be ANY, which means that any host,
foreign or local, Is acceptable.

If a host name is not specified, the default value Is ANY.

User Name

The user name Is the pathname or classname (5) of the login
node(s) which may galn access to the node assoclated with
the privilege block. Note that a different privilege block
must be created for each specific user permitted to use a
glven password. For example, if two different users, say
CCA.WALDO and CCA.DINGLE, wanted to use the same password
string ('FOO') to galn access to a node, two separate blocks
would have to be created, one per specific user name. Thus,
In this example, one prlvllege block would contalin the

information CCA.WALDO ('FO0'); the other,
(5) User classnames are defined below.
e A e e LTy o TR XAy

20

o Bhsmes i e ietiiA

o+ il

e g

ki b AL it 5 gy

EETS

Chapter 4: Security and Passwords Page 21

CCA.DINGLE ('F00'),

{ If no user name |Is specified, the default is =+, which
grants any user access to the node.

J docket
rs 1 The socket number Is a 32-bit number, e.g., 600403, or ANY,
i This 1Is an identification number assigned by the foreign

host to the user logged in on that forelgn host. Usage of

the socket number in the CREATEP statement ensures that only
! specified users at the foreign host site may galn access to
4 a particular node,

Socket number defaults to ANY.

> &5 i
Password 3
L A password consists of an alphameric string enclosed by :
single quote (') characters, e.g., P='F00'. Non-printing
‘ characters, except blanks, are not valid in a password

string. Blanks may appear at any polnt in the quoted
string. Tab characters are not permitted.

A privilege block need not contaln a password. In this
X case, none should be given when referencing the node. Note
that na password Is pnot the same as, and is 1Is treated
differently from, a pgull password (''). Null password is
treated as a password of zero length, and must be suppllied
as such whenever the node s referenced.

o
Ja

h Privilege set specificatlons
The following privilege bits are defined for 0/10:
LOGIN (L)
R In order to control login identities

more closely, the ablility to log In to a
node Is not passed to subordinates. As
a result, -L (deny login) is
meaningless.
CONTROL (C)
Control Iincludes complete subordinate
control and privilege control. Control
Is required for creating and deleting
nodes, flle
1 s and privilege blocks. It
Is also requlired for \listing privilege
blocks. It Is very powerful, and cannot
be removed by an inferlor: =C 1Is not
permitted. After 0/10, C may be split
Iinto meaningful components.

,..1- e s et agor o "?:"‘:‘:.‘A‘:";'f.;;"'m.’:_..m'“mmt s - RN . .
|

|
w
!

—-

TR TR s v e o v x: r s

Chapter 4: Security and Passwords Page

Data Control Privileges

READ (R)

WRITE (W)
W implies R and A.

APPEND (A)
A does not imply R.

Conflicts are not allowed in one tuple, e.f.
+R and =R,

Qrdering of Privilege Blocks
Ihe ordering of privilege blocks Is Important, When a node

Is referenced, the privilege blocks (if any) for that node
are scanned linearly for a password string matching the
password entered by the user, 1f a match Is found, the
user-id of the privilege block Is compared to the 1login
ldentity. {f they match, the associated privileges are
granted/denled, and access appropriate to the granted
privilege set are awarded to the node., If the end of the
privilege blocks I's reached wi thout finding a
password/user-id match, the node is opened with no
privileges.

Since the privilege blocks are scanned 1inearly, their
ordering defines their selectivity. For example, suppose a
node to have two privilege blocks which specify the same
password ('foo') but different login nodes, say, A and ==,
and suppose that the block with user name A grants greater
privileges (read/write/append) than that with w« (which
permits read). The proper ordering, as displaved by a

LIST WALDO.NODENAME %PRIV(ILEGE);
statement, is as follows: .(note 6)

(1),U=A,H=ANY ,S=ANY, G=RWA
(2),U=w»s H=ANY,S=ANY,G=R (note 7)

If the order of these blocks were reversed, so that the
block with the user name '++*' were first, then whenever the
password FOO was encountered the flrst block would be
selected; 1.e., every login pathname would match the 'ee«!,
and the matching process would be complete. Thus, the bhlock

(6) Details of this command are given below,

(7) U=++ means that any user name will be accepted as vallid.

'y = e - TG WY g i KRR, -

22

!

N Sy ﬁmti‘#@ﬂ'ﬁ? P

M a—

R e e e o T VY

Chapter 4: Security and Passwords Pare

with the user name A would never bhe found, and the user A
would be unable to open the node with the greater privileges
which should be granted him.

In 0/10 the user Is responsible for malntaining the desired
search order, by adding and deleting privilege blocks via
their block index numbers. The datalanguage for this
process is described below. Future versions of the
datacomputer may provide an automatic ordering algorithm,
which could be manually overridden, if desired.

User Classes ('Star' Featyre)

Classes of users may be glven access to a node by specifying
a user class as the user name Instead of a single user.
This is done by means of the '#' and '#+*' ('star' and
'star-star') features. |f a star appears in a pathname, it
is interpreted to mean: ‘any single (non-null) partial
pathname is acceptable here'. That is, if the nodes A.B.N1,
A.B.N2, and A.B.N3 exist in the directory tree, usage of the
user classname A.B.* would specify any of these three
pathnames. Stars may appear at any number of levels; for
example, if the nodes A.X.N1 and A.Y.N4 exist, then the
user-name A.*.* would specify both of these nodes, as well
as any of the previous three. The use of a star at any
level implies that there must be a partial pathname at that
level; e.g., the classname A.*.* could not specify node A or
A.d.

User Classes. cont. ('Star-star' Feature)

The use of a single star in a pathname indicates that a node
must exist at the level corresponding to that of the star,
and a star must be explicitly specified for each desired
level. The star-star feature ls designed to permit access
to several levels of nodes. A star-star ('++') in a user
name Is interpreted to mean: 'any number (including zero) of
partial pathnames are acceptable here'. Thus, referring to
the example of the preceeding paragraph, A.B.N1 could he
specified by any of the following:

A.B.N1 #»

A.B.* »»

A.B,w»

A% *x

A. %%

* &

*®

For 0/10, only tralling *'s and/or a final #+« are allowed.
The following, for example, are lllegal:
Al*.c

23

O T v 3y L FEEN

rod

g

e A e e e mpm——— v v

Chapter 4: Security and Passwords Pare

Datalanguage for File Securjty

Two new datalanguage statements, CREATEP and DELETEP, create
and delete privilege blocks. They are discussed In the
following sections. The list command has a new option,
%PRIV (or %PRIVILEGE), which allows the user to list the
privilege blocks for a node.

CREATEP and DELETEP are privileged requests. They are only
accepted when the associated node can be referenced with
control privilege <C>. (This means that It may be necessary
to login to some particular node before any privilege hlocks
can be added to another, and that passwords may be requlired
for the login process or for referencing nodes superlior to
the node for which the privilege block is to he added.)

Creating Privilere Blogks: CREATEP

Privilege blocks are created, and fully specified by, the

CREATEP command. A fully specified CREATEP statement might
appear as follows:

CREATEP NODE1('PW1').NODE2, U=CCA.WALDO.# ~%, H=3u,
S=604320,
P='SECRET PASSWORD', G=R, D=WA, N=2;

In this example, the node for which we are creating a
privilege block is NODE1,NODE2. We must specify ('Pwl') for
NODE1l in order, perhaps, to gain control privileges at the
first level. The parameters which follow the nodename is
the privilege keyword list. These are discussed
Iindividually 1iIn the following sections, and are summarized
in Appendices A and B,

CREATEP: User Name

The user name Is speclified by 'Us' followed by an
unqualified pathname or classname string. The pathname may
have any number of levels. It must not contaln password
strings for any level,

The following are valid pathnames/classnames.
CCA
CCA.WALDO,DINGLE

24

" ""X‘;“IJ

o i ey MR e,

Lo s

g

s o 5 SRS AL T T IR, SRl A A SN
s .

Chapter 4: Security and Passwords Page 25 !

CCAO..*]
CCA. #s ’
LS B
* Ak

[2 3

‘ I

CREATEP: Host Number

The host number is specified by 'H=' followed by a decimal
number from 1 to 255, or elither of the strings LOCAL or ANY.

H=28
H=ANY
H=LOCAL

.

e
[

CREATEP: Socket Number

The socket number is specified by 'S=' followed by the
32-bit foreign-host assigned decimal number corresponding to
the directory the user is logged into at that foreign host,
or the string ANY,.

[}
2

AT

S=309483 "
S=ANY

AN

CREATEP: Password String

The password string is specified by 'P=' followed by any
datacomputer string constant (tabs may not be included,
although blanks are permitted), e.g., 'PASSWORD 1', '? =
++11', or '"' (null password).

Note that if no password string 1is specified at CREATEP
time, then that oprivilege block will have no password
associated with it. Ng password 1is different from pqull
password (P=''), which Is a valid password zero characters
in length.,

CREATEP: Grant Privileges

Privileges are granted by 'G=' followed by

C (control)

L (login)

R (read file data)

W (write file data)

A (append data to flle)

in any combination and In any order, e.g., G=CRAWL (al)
privileges), G=WAR (read/write/append), etc.

R U

Chapter 4: Security and Passwords Page 26
CREATEP: Denv Privileges
Deny privileges are specified by 'D=' followed by R, W or A.
Login (L) applies only to the node for which it s
specified. It is not passed to subordinates, Control (C)
cannot be removed by any inferlior node, i.e., it is passed
to all subnodes.
CREATEP; Privilege Block lndex
As privilege blocks are created, they are assigned Iindex
numbers by the datacomputer. Block numbers are assigned to
privilege blocks sequentially according to their search
order. Block numbers can range from one to n, where n Is
the total number of password blocks In the search sequence.
Blocks can be explicitly ordered by the user at CRFATEP time
by entering 'N=' followed by the number that the newly added
block 1is to have In the search sequence. N must be greater
than zero, and not greater than the total number of
privilege blocks currently existing for the node. Note that
this index is not In any sense a part of the data contained
in the privilege block; it is merely the position of the
block in the password block 1list.
An example. |f there were three blocks in the oprivilege
block 1ist for a node (NODE1l),

1 U=AAA

2 Uu=CCC

3 U=DDD
and a new block were to be added between the first and
second existing blocks, I.e., so that the new block would
then occupy second position, we add a keyword, N=2, to a
CREATEP command:

CREATEP NODE1l,U=BBB,P='200',N=2;
which results In the following privilege block list:

1 U=AAA

2 U=BBB

3 UuU=CcC

4 U=DDD
{f N had been omitted, the new block would have been added
at the end of the list, Note that the indices of the two
blocks following the new one have been bumped by one,
Similarly, 1If any block Is deleted, the indlices of all the
following blocks are reduced by one.

e A P T —— S —
- NT. —

» e
“ ® e ‘~
"
‘ | ———

N BISRL B R .y me ch————t o - o =

Chapter 4: Secur{ty and Passwords Parge

Looking at Privilege fBlocks: LIST

In order to permit the user to list oprivilege block
information, the %PRIV (or %PRIVILEGE) option has been added
to the datalanguage LIST request. It looks 1ike this:

LIST CCA.WALDO %PRIV (or)
LIST CCA.WALDO %PRIVILEGE

Passwords cannot be llsted with the %PRLV ontion (or in any

other way -~ so don't forget ‘'em!), Privilege block
Information is preceeded by the {ndex number of that block.
Al other information In the privilege block is listed in a
format similar to that which might be found fin a CRFEATEP
command, e.g, either of the L(IST requests ahove might
generate the following output from the datacomputer:

(1),U=CCA,.WALDO,H=LOCAL,S=ANY ,G=CRAWL
(2),U=CCA.* o+ H=ANY ,S=ANY,G=RWAL
{3),U=» xx H=32,8=654364,G=RL,D=WA

%PRIV may be used only when the controlling node has control
privileges.

leleting Privilege Blocks: DELETEP

Privilege blocks may be deleted with DELETEP followed by the
index number of the privilege block to be deleted,

DELETEP 3

The controliling node must have control privilege.

27

L AR S B

%
‘
;

Chapter 4: Securlity and Passwords Page

Example

This example will create a node which will be the
controlling node for ' all other nodes at site CCA.
Presumably, access to thls controlling node would be
restricted to very few persons at that site; 'super-users',
as It were. This could be done by means of a password. In
addition, anyone seeking control privileges for CCA might be
required to be logged-in to some other (access restricted)
node. The person with access to CCA would be responsible
for creating subnodes, perhaps one for each programmer
permi tted to use the datacomputer. These indlvidual
programmers could then create thelr own directory structures
(nodes, ports and files) in any manner they wish,

The site-node CCA Is created by the following serles of
requests:

CREATE CCA;

CREATEP CCA,P="HONCHO',G=CL;
CREATEP CCA,P='FLUNKY',G=L;
LOGIN CCA('HONCHO');

The user Iis now logged In to CCA, He has control
privileges. Next he creates a serles of programmer-nodes,
each with control privileges. Initially, two privilege
blocks are created for each programmer node. One requires a
password (known to, and probably specified by, the
individual programmer), and the other requires no password
and Is accessible to anyone logged in to CCA or any of Its
subnodes. However, persons who log In to a programmer node
without speclifyling a password are not glven control
privileges and thus cannot modify or delete anything that
the programmer wishes to keep secure.

CREATE WALDO; CREATEP WALDO,U=CCA,P='TURKEY',6G=CL;
CREATEP WALDO,U-CCA."‘G-L;

CREATE CLYDE; CREATEP CLYDE,U=CCA,P='FETCH',G=CL;
CREATEP CLYDE,U=CCA,*»,G=L;

CREATE DINK; CREATEP DINK,Us=CCA,P="'PODUNK',G=CL;
CREATEP DINK,U=CCA,*#*,G=L;

After this is done, super-user checks the privilege blocks
he has created, first at his own node level:

LIST STOP.CCA('HONCHO') %PRIVILEGE;

Cm - —-.e

28

\ iy “LN‘Ll- -

a2l A% o

Y

Chapter 4: Security and Passwords Page

and he receives a datacomputer printout In the following
format:

(1),U=*s H=ANY,S=ANY,G=CL
(2),U=#v H=ANY,S=ANY,G=L

He next verifies that each of the programmer-node privilege
blocks has been correctly entered, e.g.,

L1ST WALDO %PRIV;
and the datacomputer replies:

(1),U=CCA,H=ANY,S=ANY,G=CL
(2),U=CCA.*+*,H=ANY,S=ANY,G=L

At this point, programmer Waldo tells super-user that he
would rather have 'donkey' as his control password rather
than 'turkey'. Since the user name (U=CCA) 1in Waldo's
control privilege block 1is more restrictive than the user
name (U=CCA.**) in the non-control privilege block, the
first privilege block must be deleted and the new one added
in the same position (N=1):

DELETE WALDO 1;
CREATEP WALDO,U=CCA,P="DONKEY',G=CL,N=1;

We now have the following directory:

CCA
CCA.WALDO
CCA.CLYDE

CCA.DINK

Each of the programmer-nodes 1lsted above has Its own
password which is known to the person having access to that
node. In addition, each is required to login to CCA bhefore
being able to acquire login and control privileges at its
own level, (Most or all of the programmers at CCA are given
only the password FLUNKY, which does not give control
privileges. Thus, they cannot create or delete any nodes at
the programmer-node level or look at the restricted data of
any other programmers,)

As soon as he Is Informed that he may joln the select

International hoard of datacomputer users, Waldo rushes to
his terminal to login:

LOGIN CCA('FLUNKY');
LOGIN WALDO('DONKEY');

29

R FIPC N S

3

o -y

BRE i e

W S | e g bl S i P % . . 4

Chapter 4: Security and Passwords Page 30

Since he has logged in to his node using the password whlich
grants control privileges, Waldo now creates BOOKFILE and
BOOKPORT and reads some data into BOOKFILE from a TENEX flle
named TENEX-BOOK,.FILE (note 8):

CREATE BOOKFILE FILE LIST(,1000),P=FOF
BOOK STRUCT
TITLE STR (,100),C=1
AUTHORS LIST(,5),C=1
AUTHOR STR (,50),C=1
PUBL!ISHER STR (,50),C=1
END;

CREATE BOOKPORT PORT LIST(,1000),P=EOF
BOOK STRUCT
TITLE STR (,100),P=EOR
AUTHORS LIST(,5),P=£0B
AUTHOR STR (,50),P=EOQR
PUBLISHER STR (,50),P=EOR
END;

CLOSE %O0PEN;

C ks R

OPEN BOOKFILE WRITE;

OPEN BOOKPORT; CONNECT BOOKPORT 'TENEX-BOOK.FILE';
(NOTE 8)

BOOKF 1 LE=BOOKPORT;

CLOSE %OPEN;

In order to permit others to look at his library file, Waldo
creates a couple of privilege blocks, The flrst permits
anyone at CCA to look at his book list, while denying him
the right to change anything. The second is for Waldo's
private use in changing the file:

CREATEP BOOKFILE,U=CCA.*,G=R,D=AW;
CREATEP
BOOKFILE,U=CCA.»ALDO,P="READ®MORE~*EVERY#*DAY ', G=RWA;

(8) A TENEX filename Is used in this example for the purpose
of didactic «clarity. In practice, this would usually be
done only by local datacomputer users (users located at the
site of the datacomputer), Remote users would have to
arrange for operator intervention, If connecting to a flle
at the datacomputer site; or would specify the host name and
socket number from which the data would be sent to the
datacomputer,

- A T STy

I

[4

Page 31

Chapter 5: Assignment and For-loops

S
g

Asslgoment lnvalving OQutermost Containers

Transmission of data is achieved with an assignment, {
The syntax of an assignment request that Involves two
outermost
containers Is

{ident> = <{ident>;

where the <ident>s are the node names of open outermost
containers. The first ident In the statement is that of the
receiving container; it must be open iIn elther WRITE or
APPEND mode. The second ident is that of the transmitting
container; It can be open in any mode, but It must have READ
privilege (see Chapter u4).1f the second ident Is a FILE, It
must contain some data.

S PR 0 SR

AR
i

Y

The containers In the assignment may be elther flles or
ports. The various combinations are listed here, with a
description of the actlion of the assignment request In each
case.

Receiving Transmitting Comment
contalner container
FILE FILE coples data from one FILE to another
within the datacomputer.

FILE PORT transmits data from some source
external to the datacomputer through
a PORT, into a FILE.

PORT FILE transmits data from a FILE, where it
is belng kept In the datacomputer,
through a PORT, to the outside world.

PORT PORT transmits data from one place to
another in the outside world, using
the datacomputer only as a channel
for transmission.

Ihe Matching Rules

in any assignment statement such as

Wornid: 2o PPt Sogurs o Te iy - -~ TR TR et - v N S A R T

T B BRAV-TS T G N,

e, DS o o T

Chapter 5: Assignment and For-=loops Page

‘

X =Y,

(not only one involving two outermost containers) the two
operands, X and Y, each has 1its own description. The
datacomputer will transform the data In Y to match the
description of X. In order for the datacomputer to be able
to do this, the descriptions must match. This amounts to a
restriction that only similar objects can be assigned to
each other. Speciflically, for two assignment-operands X and
Y to match:

1.A. X and Y must have the same type: LIST, STRUCT, or
STR, or BYTE,

AND

1.8. If X and Y are both LISTs, then they must have
compatible slzes, or else X must be a PORT. The sizes are
compatible if the minimum size of X Is less than or equal to
the minimum of Y and the maximum size of X is greater than
or equal to the maximum size of Y. This vrestriction 1leads
to cases where [t Is legal to assign Y to X but not to
assign X to Y. Note that iIf X and Y are outermost 1lists
with no 1ist size specified, the datacomputer supplies a
default size based on the space allocation. (use the LIST
request with the $DESC option to find out what the default
size Is.)

AND

1.C. 1f X and Y are STRUCTs or LISTs, then at least
one container Immediately enclosed In X must match, and have
the same ldent as, one container Immediately contained in Y,

OR

2. X must be a STRing and Y a constant. A constant iIs
an arblitrary string of characters. |f they are enclosed by
single quote marks, then Is Is an ASC!| constant; a single
or double quote mark may be Iincluded In such a string only
by prefixing It with another double gquote. The constant
'DON"'T! represents the string DON'T, (This rule s
included here for completeness and will be discussed later.)

Padding and Iruncation

If two containers of type STR are used in an
assignment, the matching rules do not require that their
sizes match. There are three cases:

1, The two sizes are equal., The string is assigned
wi thout change.

2. In the assignment X=Y, the slze of X |s greater
than that of Y. In thls case, It Is as If the string In Y
is padded at the right-hand side to make It as 1long as X,
before assignment (s performed. If a f111 character is
specified In the description of X (i.e. 1f the parameter

32

‘33

-§
‘o
=

4
Vg
¥

b

»R

g

,] M
D . - ; , }

X -
‘4

Chapter 5: Assignment and For-loops Page 33

.F='a' or ,F=n |Is wused In the CREATE request), then that | 1
; ; character Is used. Otherwise, a blank 1Is used for ASCII
1, strings and zero Is used for non-Ascli data. s
n 3. The size of X Is less than that of Y. The string

ﬁ contiined In Y Is truncated at the right-hand side to be as P
! short as X, and the shortened string is then assigned. "

Examples

Let us consider a few examples of the operation of the
rules. Suppose we have

CREATE M FILE LIST (25), P=EOF RECORD STR(10);
CREATE N TEMP PORT LIST (25), P=EOF RECORD STR(10) ;
M = N;

where M Is a FILE In which data read from the PORT N is to
be stored in the datacomputer. The assignment M = N |s
legal because M is in WRITE mode and both M and N are open
(opened by the CREATE statements). In addition, M and N
match: their subcontainers have the same ident (RECORD), and
matching descriptions, They satisfy rule 1.A, since the
(type is STR in both cases, and rules 1.B and 1.C do not
apply to containers of type STR.

& The effect of this assignment Is to read strings of

b bl R s

S

A4
length 10 from the PORT N, and to store them In the FILE M, s
If an attempt Is made to store more than 25 strings in M, ;
the datacomputer wl11 complain, as space was allocated for
only 25 strings. However, the 25 in the PORT description is
ignored.

A similar example, using the above description for M:

OPEN M APPEND;

CREATE O TEMP PORT LIST, P=EOF
RECORD STR (,15), P=EOR ;

' M =0;

Each STRing In O is no more than 15 ASCI! characters and
ends with an EOR, Each one will be padded or truncated to
10 characters since M has flxed=length rather than
punctuated STRings.

Now a more complex example.

CREATE FF FILE LIST (25), P=EOF
PERSON STRUCT
NAME STR (15)
ADDRESS STR (20)
CITy STR (10)
STATE STR (2)
ZIP STR (5)

Chapter 5: Assignment and For-loops Page

SOCSECNO STR (10)
DEPENDENTS LIST (10) NAME STR (15)
END ;
+«.» requests that store data In the FILE FF ...
CREATE PP PORT LIST, PsEOF
PERSON STRUCT, P=EOR
NAME STR (15)
SOCSECNO STR (10)
END;
PP = FF ;

Here, the assignment PP = FF is 1legal because: PP 1is in
WRITE mode, both FF and PP are open, and their descriptions
match. Rule 1.A: the type of both FF and PP is LIST, Rule
1,B: PP is a PORT. Rule 1.C: the subcontaliner PERSON
immediately contained in FF has the same ldent as PP,PERSON,
and the two STRUCTs PERSON match. We determine this last
fact by going round once again with the matching rules.

Rule 1.A: FF.PERSON and PP,.PERSON have the same type,
STRUCT. Rule 1.B does not apply to STRUCTs. Rule 1.C: a
container Immediately contalned in FF.PERSON,
FF.PERSON.NAME, has the same ident (NAME) and a matching
description (STR (15)) as a container immediately enclosed
by PP.PERSON, that is, PP.,PERSON.NAME,

The effect of this assignment 1{is to create a new
instance of the struct PP.PERSON for each instance of PERSON
in FF, and add it to the LIST PP (that is, output It through
the PORT PP). Each PERSON that is output contalns only a
selection of the data stored In FF: only the NAME and
SOCSECNO.

If the situation here were reversed, that 1Is, If FF
were open in WRITE mode, and PP were in READ mode, the
effect of the assignment

FF = PP;

would be to read data from the PORT PP and store it In the
FILE FF. However, only the NAME and SOCSECNO would be
available as data. The datacomputer handles this sltuation
by assigning strings consisting only of blanks (the default
since no fill character is specified in the description) to
the unmatched STRs in the output LIST-member. Thus,
ADDRESS, CITY, STATE, 2ZIP, and all 10 instances of
DEPENDENTS .NAME would be blank in the FILE FF,

Very often, assignment at the level of outermost
containers Is all that a user's program will requlre of the
datacomputer. An example would be a time-sharing monltor
system, which might want to store backup files, large files,
or infrequentliy-used files at the datacomputer rather than

-4 L A S i i L S O S S R R St oot S AR
Serm N -
!
- — e

PO W I

Y

U gt - 11 ik g , O SR TE T VS RN
L iﬂﬁaﬁ‘ﬁ“ﬂhﬂb,,;guhlﬁtﬂnﬁﬁumu.num‘A.n‘u

e

-

Pl N A Sl M T e e e 1 -

Chapter 5: Assignment and For=-loops Page

locally on (expensive) disc storage devices. Typically,
such a monitor system would itself keep track of where
various files resided, and move them from place to place
over the ARPA network without burdening Its users with the
details of exactly where thelr filles were stored,

For such an application, a directory might be set up
with one node identifying the operating system that is doing
the file storage. Subordinate to this node might be the
user idents of 1Its various time-sharing users whose files
might be stored on the datacomputer. These user nodes, In
turn, would have the file-names themselves as subordinate
nodes; as bottom-most nodes, these would also be outermost
containers and thus could store the data itself. As a
diagram:

SYS87

SAM SMITH JONES DURFEE

FILE1 WORKFL DATAS TEMPX

Figure 5-3., The directory for a sample application:
providing backup file storage for time-sharing users

A directory of this sort would initially be set up by
saveral CREATE requests; i.e.

CREATE SYS87;
CREATE SYS87.SAM; CREATE SYS87.SMITH;
CREATE SYS87.JONES; etc.

Then, whenever a particular file was to be moved to the
datacomputer, a directory node for that file would be set up
by, for example,

CREATE SYS87.SMITH.FILE]1l FILE LIST (999)
A STR(80);

35

YT T NS SRS E IR PO T

Chapter 5: Assignment and For=loops Page

(describing a file with less than 1000 80-character records)
and the file would be moved with an assignment statement
specifylng a PORT with a matching description, and the FILE
FILE1l, open In WRITE mode. Thus:

CREATE T TEMP PORT LIST A STR(80);
FILEL = T;

Note that the two outermost containers FILEl and T in
the assignment statement FILEl = T match each other.

In order to recover the file from the datacomputer when

it is again needed, a PORT would be opened In WRITE mode
wi th

CREATE T TEMP PORT LIST A STR(80);
OPEN SYS87,.SMITH.FILE1l READ;
T = FILEL1 ;

and the reverse assignment would take place.

Selection of LIST Members

In the examples glven above, there Is one output LIST
member for every Input LIST member. Subsets of the Input
LIST member (i.e. the LIST on the right side of the =) may
be specified by the use of WITH clause as an input-spec,
For example, consider the description

CREATE F FILE LIST, P=EOF
P STRUCT A STR(3) B STR(5) END;

and a matching PORT R, |If only some of the P's on the LIST
F were to be output -- those with the string A equal to the
string '500', say -- one could speclfy

R =F WITH A EQ '500';

referring to the set of all members P of the LIST F that
have the given property. Note that A Is understood to refer
to F.P.A; see the section on the context rules below for an
explanation, Quotes are used 1in the expression '500' to
indicate that an ASC!I string constant is Iintended.

In a WITH clause, the expressions one can use to choose
certaln LIST-members, which are called Boolean expressions,
must Involve comparison of a contalner that Is a STR or BYTE
with a constant (llke 'S00' in the example), using the
comparison operators

36

A I L U LTINS

¥ ;15‘ R i

‘t'.f

FETR W TR

_JONS SR

Chapter 5: Asslgnment and For=-loops Page

EQ (equals)

NE (not equal to)

GT (greater than)

LT (less than)

GE (greater than or equal to)
and LE (less than or equal to).

Combinations of comparisons with
OR, AND, NOT, and ANY

are also possible. In precedence of operators, ANY (see
below) 1is highest; NOT 1Is next in precedence, then AND,
which is in turn higher than OR; parentheses may be used to
affect the order of evaluation of these operators.

When using an Input-spec, the name of the input
LIST-member may be used instead of the name of the Input
LIST. (This is for consistency with the syntax of the
FOR-1o0p, discussed betow.) Thus,

R =F.P WITH A EQ '500';

Is equivalent to the example above. Some sample Input-specs
are thus:

F.P

F.P WITH A EQ '500"'

F WITH A EQ '500' AND B GT ‘'Azzzz'

F.P WITH (A EQ '500' AND NOT B GT 'MONDA') OR
(A EQ '600' AND B NE 'ZYYYY')

For ASCI| containers, the operators GT, LT, etc, compare
the ASCI1 codes for the given strings and the gliven strings
must be of the specified 1length. This means that the
character blank Is less than the digits, which In turn are
less than the letters. Consult a reference document for the
complete 1ist of ASCI| codes for all characters.

Also, while an input-spec like
F.P WITH A EQ '5'

Is legal, it will not find any P's, since there are no A's
with only one character.

Retrlievals Using loner List Members
Consider a description 1ike

G FILE LIST, P=EOF
R STRUCT

37

e ' Shaiee

YR T L

"
o

S & i 205

Chapter 5: Assignment and For-loops Page

A STR (W)
B STR (&)
W LIST (20)
WA STR (5)
END

Each R has 20 Wa's, since R contains an Inner 1ist (W), An
Iinput-spec like

G.R WITH WA EQ 'ABCDE'

specifies all R's with at least one Wa with value 'ABCDE'.
This may also be expressed as

G.R WITH ANY WA EQ 'ABCDE'

The former Is called an implicit ANY and the latter, an
explicit ANY.

The container WA can be used In boolean expressions
such as

G.R WITH
ANY (WA EQ 'MARCH' AND WA EQ
'33103')
G.R WITH ANY
(WA EQ 'MARCH' OR WA EQ 'WORD ')
G.R WITH ANY WA EQ '12345' AND B EQ 'CALI'
An ANY expression cannot be used within the object of
another ANY expression (nested ANY's).

In most cases, the explicit ANY s not requlred.
However, consider the description:

FAMILIES FILE LIST (100), P=EOF
FAMILY STRUCT
MOTHER STR (10)
FATHER STR (10)
CHILDREN LIST (10)
CHILD STRUCT
NAME STR (,10), C=]
AGE STR (2)
END
END;

The following expressions are not equivalent:

FAMILY WITH ANY (CHILD.NAME EQ 'FLLEN' AND
CHILD.AGE EQ '21')

FAMILY WITH CHILD,NAME EQ 'ELLEN' AND
CHILD.AGE EQ '21°',

38

Chapter 5: Assignment and For=loops Page

The latter case Is Interpreted as:

FAMILY WITH ANY CHILD.NAME EQ ‘ELLEN'
AND ANY CHILD.AGE EQ '21°

and refers to any FAMILY with an ELLEN who elther Is 21 or
has a sibling who is 21. The former only refers to FAMILYs
with a 21-year-old ELLEN.

In all of these examples, the Inner 1ist Iis the
second-level 1ist, if there 1Is a third level 1ist, its
members may not be used Iin a boolean expression. For
example, given the description:

F FILE LIST R STRUCT
A STR(1)
L LIST (5)
L1 LIST (5)
B STR (1)
END;

Ll is a third-leve) list, and so B cannot be used in a WITH
expression, However, A may still be used In a WITH
expression.

Betrievals Using lnverted Coptainers

A STR may be lnyerted if it 1Is contained in a FILE
which is a LIST and 1if the LIST members are flxed-size.
This Is useful if the STR will be used often In a bhoolean
expression, Inversion Is speclified by "i=p" or "I=|" as
follows:

CREATE F FILE LIST (0,100), P=EOF
P STRUCT
A STR (3), (=D
Q LIST (10)
B STR (5), t=]
END;

The "I" of the above stands for inversion, the "=0" |s used
with members of outer lists, the "=1" with inner 1ists.

An Inversion on the string A greatly Increases the
efficiency of retrieving sets of outermost-L!ST members by
the contents of the string A -- that Is, retrieving subsets
of the P's that are defined by thelr values of A. Retrieval
by content based on a particular string is possible whether
or not that string 1is Inverted; only the efficliency Is
improved by the existence of an Inversion on the string.

There is a certaln cost assoclated with inversion,
however. storage space must be allocated for a secondary

39

- ;‘{.!‘#‘ yts P9 e

"L YRR WY

S R s AN

Fang i

4
f

.
"
G

Chapter 5: Assignment and For-loops Page

data structure that the datacomputer uses for retrievals
based on linverted strings. Updating a FILE takes longer
when It Is inverted, since the secondary data structure must
be updated as well, Thus, the decision to Invert a
particular string will depend on the relative cost of
Iincreased retrieval time versus increased storage space, the
frequency of retrieval based on the particular string, and
other consliderations. Appendix C contains further technical
details concerning Inversion.

Assligoment with EQR

Containers that are not outermost can also be used fin
assignment statements. With FOR, assignments that retrieve
subsets of LIST-members may be performed, in contrast with
assignment of outermost containers. FOR causes some set of
datalanguage statements (usually assignment statements) to
be executed several times, once for each member of a glven
set of LIST-members.

The syntax of the FOR-~request Is:
FOR <output-spec>, <input-spec> <body)> END ;

The <input-spec> specifies a set of LIST-members to which
the operations specified in the <body> are to bhe applied. A
new member of the LIST specified by the <output-spec)> |Is
created for each member of the Input set processed. 1f the
output-spec Is omltted, the FOR-request generates no output.

Jhe input-spec The input-spec must specify a set of
L1ST-members. The simplest kind of input-spec Is just an
entire LIST =-- {.e. the set of all the LiIST-members,.
However, the name of the LI1ST-member and not the LIST itself
must be given, For example, If

CREATE F FILE LIST, P=EOF
P STRUCT A STR (3) B STR (5) END;

then F.P would be a legal input-spec, and would refer to the
set of all P's in the LIST F.

A subset of the LIST-members may be specified by the
use of a WITH clause In the Input=-spec. The input-spec on a
FOR~loop looks ilke the input spec on the assignment of
outermost containers (discussed above), except that the
LIST-member must be named rather than the LIST. Thus

F.P WITH A EQ '500'

4o

TR W e B m
— .. -

SR AR

o

<JL

e fagem
-

¥FLoeat

S

T .

—

a“r

Chapter 5: Assignment and For-loops Page

can be used in a FOR-loop, but not
F WITH A EQ '500'

- The output-spec is an optional
argument, Like the input-spec, It must be the name of a
LIST-member. The LIST that contains the LIST-member
specified by the output-spec Iis often called the goutput
LIST. A new member Is created and added to the output LIST
for each execution of the FOR~body.

A FOR-loop may be 1loosely thought of as assignment
between two LISTs. However, the descriptions of the members
of the input and output LISTs need not match. Otherwise,
the restrictions governing the input and output LI1STs of a
FOR are largely the same as those governing outermost LISTs
used in assignment:

1. Both LISTs must be open or contained in open
outermost containers

2. If the output LIST is an open outermost contalner,
it must be in WR!TE or APPEND mode.

3. 1f the input LIST is not an outermost contalner,
the LIST that most I'mediately encloses it must be the input
LIST of an enclosing FOR 1o0p.

b, Similarly, 1f the output LIST is not outermost, the
LIST that most immediately encloses it must be the output
LIST of an enclosing FOR.

Ihe EQR-body The operations that are legal In a
FOR-body are assignment and another (nested) FOR., The
assignment may be of the form

<name> = {constant> ;

where <name> refers to a container that s a STR (see
matching rule number 3), or assignment may be of the form

<{name> = {name>;

to transfer data from one container to another. tf the
latter is the case, then assignment Is subject to

1. the restrictions specified In the matching rules
above,

2, the usual restriction that data can be transmitted
Iinto a container only If it is open in WRITE or APPEND mode,
and

3. the restriction that assignment must occur between
gobiects, not sets gof ghi .

4. In Version 0/10 of datalanguage, there are other
restrictions governing the containers that can be referenced
in the body of a FOR-loop, See Appendix E.

41

t
%

-

. pr AT

|

Chapter 5: Assignment and For=-1loops Page 42

Let us look at a few examples, and describe thelr
operation In words. With F a FILE as above, and

CREATE Q FILE LIST
P STRUCT
A STR (3)
B STR (5)
END;
OPEN F WRITE;
then

F=0Q;

FOR F.P, Q.P
F.P = Q.P ;
END;

and

have the same effect: a new member P is created and added to
the LIST F.

Likewise

FOR F.P, Q.P WITH A EQ 'S00'
F.P =Q,P;
END;

HAS THE SAME EFFECT AS
F =Q.P WITH A EQ '500'

A final example: with FF.PERSON and PP,PERSON as given
in the example for the matching rules,

FOR PP.PERSON, FF,PERSON WITH STATE EQ 'RI'
OR STATE EQ 'CT' OR STATE EQ 'MA'
OR STATE EQ 'VT' OR STATE EQ 'NH!
OR STATE EQ 'ME'
PP.PERSON.NAME = FF,PERSON.NAME;
END;

will have the effect of outputting through the PORT PP, the
NAMEs of all PERSONs in the FILE FF who live in New England;
l.e. with STATE equal to one of the New England states,

e

AT LIV

A8 b ol

-ﬂ"r

ENSOSTFSOWSE W ¢ '..."__1r0

et e e e - N ca——— -

Page 43

Chapter b: Using the Datacomputer

We proceed now from the basics of the language Iitself,
such as containers and assignment, to a broader view of how
datalanguage might be employed by a user's program, We will
discuss such matters as accessing the datacomputer,
transmitting data to and from datalanguage PORTs, and
various aids to the maintenance of data and FILF and PORT
descriptions on the datacomputer.

dnteracting with the Datacomputer
Typically, datalanguage requests will he sent to the
datacomputer by a user program residing on some computer on

the ARPA network. All interaction between the user program
and the datacomputer takes place over the network.

Information transmission over the network takes place
along uni-directional paths. For a two-way conversation,
two such paths are needed, one for transmission 1in each
direction. The end of a transmission path is called a
socket; a socket can be either a send (output) or receive
(input) socket. Obviously, a transmission path requires a
send socket at one end and a receive socket at the other. A
diagram of the sockets involved in a two-way conversation

over the network appears below.

USER (HOST) COMPUTER DATACOMPUTER

USER QUTPUT DATALANGUAGE
SOCKET INPUT SOCKET

USER INPUT DATALANGUAGE

SOCKET OUTPUT SOCKET

Figure 4-1. Network connections to the datacomputer

A host computer s ldentified on the network either by
a number or by an alphabetic name, 1ike BBN-TENEX. A socket
within a given host is ldentifled by a number; send sockets

I — -

lr’

by
.

Chapter 6: Using the Datacomputer Pare L4

have odd numbers and receive sockets even ones. For a
connection to be opened, both hosts involved must request
that it be opened. Likewise, after data transmission is
complete, both hosts must close their ends of the
connection. The period of time during which network
connections are open between a user host and the
datacomputer is called a sessign.

in the user program's dialogue with the datacomputer,
the transmission Iin one direction consists 1largely of
datalanguage requests, while messages from the datacomputer
are sent in the other direction, to the user program. The
sockets at the datacomputer that are used for these purposes

are called the datalanguage Jlnout socket and the
output socket. The terms datalanguage
input/output port are also used. These ports, like the

PORTs that a user can create with datalanguage CREATE
reguests, are channels for the input and output of
information. However, the purpose of the datalanguage ports
is to receive datalanguage and transmit datacomputer
messages; the purpose of a user PORT is to transmit or
receive data.

The protocol by which a user program can set up
datalanguage Input and output sockets connected to its own
output and input sockets is described in Appendix D of this
document.

Synct . l

Since use of the datacomputer typically involves the
interaction of two programs at opposite ends of a
communication network with a finite time delay, steps must
be taken to ensure that the programs remain In synchrony
with each other. |If they do not, the user program might
blithely go on sending datalanguage when tne datacomputer
expects data or might receive diagnostic messages when it
expects a list of directory node names.

To avoid such problems, the datacomputer generates a
variety of messages that keep the user program informed of
what is going on. The messages fall into several
categories: there are error messages, which will be
discussed in a later section; informational messages, which
can safely be ignored or merely logged by a user program;
and synchronization messages, some of which at least must he
processed by the user program to ensure proper
communication. The first character of the message differs
from category to category, allowing the user program easily
to differentiate the various classes of message.

.

o e

xx.

-yl _,_‘v;

Chapter b: Using the Datacomputer Parge 45
Prefix Type of Message
?, -, or + error message
; informational message
. synchronization message

Other special characters may be added as datacomputer
message-prefix characters in future versions. The letters,
digits, tab, and space will never be used as messare
prefixes, however.

The datacomputer's messages all follow a common format,
which includes the special header character just described,
a letter and three digits that a program can use to identify
the message, the date and time of the message's
transmission, and a variable-length string of text that can
be read by a human user. Specifically, the format Is:

.X999 dd-mm=~yy hhmm:ss (TAB) TEXT STRING (CR, LF)

where . represents the header character, X999 represents
the message identifier (for example, 1210), dd=-rm-yy
represents the day, month, and year (for example, 25-09-73),
hbmm:ss represents the time on a 24-hour clock in hours,
minutes, and seconds, (TAB) represents a tah character, and
(CR, LF) represents the carrliage return, line feed
characters that terminate the message. A1l alphabetic
characters in the message are ce italized. Note that the
message may be very long (too long to print on a 72-column
printer, for Instance), so a user program that processes
datacomputer messages may have to format them to be
readable.

In this manual, only the invariant parts of messages
will be displayed; that I|Is, the header character, the
identifying letter and digits, and the message text.

To illustrate the use of synchronization messages 1In
pacing Interaction with the datacomputer, consider these
two:

1210 LAGC: READING NEW DL BUFFER
.J900 FCFINI: END OF SESSION

The first message, .1210, is sent by the datacomputer over
the datalanguage output socket, and hopefully recelved by
the user program over an Input socket, whenever the
datacomputer |Is ready to accept datalanguare requests. The
user program will In general respond to this message by
transmitting a line of datalanguage. A line is some number
of characters (currently there is an upper 1imit of about
2500) terminated by elther the character sequence carriage

g AR

v B Teen

T -

Chapter b6: Using the Datacomputer Page 46

return, line feed (ASCiIt codes 15, 12 octal) or the single
character eol (37 octal). On a line may be one datalanguare
request (terminated by a semicolon), several requests (each
terminated by a semicolon), or a portion of a request.

In the first two cases, when the datacomputer recelves
the requests (and if they contain no errors) it will proceed
to execute them, (typically generating messages and/or
initiating data transfers as it does), Followlng execution,
it will again send the .1210 message signifying that it s
again ready to receive datalanguage. |In the third case, the
datacomputer will continue to send .1210 messages, prompting
the user program for lines of datalanguage, until a complete
request has been assembled; the request will then be
executed as described above.

The second message, .J900, Is sent by the datacomputer
at the end of a session. The user program may request that
the session end by sending the datacomputer a control-Z
(ASCIl code 32 octal) in response to a .1210 message. The
datacomputer responds to control-Z by executing an end of
session procedure, which involves closing any open
containers, deleting TEMP PORTs, and sending the ,J900
message. The user program may then close ts network
connections with the datacomputer,

Synchronization after an error 1Iis discussed in the
section entitled Error Messages below.

lransmittinge Data through the Datalanguage Ports

Often, a user program will need to send data over the
network to be stored at the datacomputer, or to process data
that it receives from the datacomputer, |If all of the data
is described as ASCII, then this may be done by using the
datalanguage input or output port.

To reference data that he or she will transmit through
the datalanguage input socket, the user need only open a
PORT and use it on the right-hand side of an assignment Iin
datalanguage. When the assignment is executed, data will be
accepted through the datalanguage input port and assigned to
whatever container appears on the left side of the request.

Similarly, to output data through the datalanguage
output socket so that it can be plicked up by the user
program, all that is needed In datalanguage is a PORT wused
on the left-hand side of an assignment. Any data assigned
to that container will be transmitted out through the
datalanguage output port over the network,

TEB W e ki Jro e i Y - - ~—

RTT L. (T

P

A VS 0 5 Wbl A 5.

74._

1

i‘:

s

:::======;===========:========================-n-r——

Chapter 6: Using the Datacomputer Page 47

Of course, performing this feat requires the use of
more synchronization messages. To treat the data-input case
fFirst:

«1231 OCPBO: (DEFAULT) INPUT PORT OPENED
.1251 OCPBC: (DEFAULT) INPUT PORT CLOSED

After the user program has sent the datalanguage assignment

request that references the open input PORT, the
datacomputer will transmit the .1231 message over the
datalanguage output port,. The message signals that input

data is now expected through the datalanguage input port,
and the user program should send the data. NData
transmission is terminated by a control=-Z character, which
causes the datacomputer to send the .1251 message confirming
that data transmission is finished. The next
synchronization message will be .1210, a request for more
datalanguage.

The synchronization procedure governing data output
through the datalanguage output port Is similar, The
messages are 4

. 1241 OCSOP: (DEFAULT) OUTPUT PORT QPENED
.1261 OCSCL: (DEFAULT) OUTPUT PORT CLOSED

When the assignment statement 1is executed which requests
that data be output through the datalanguage port, the
datacomputer first sends .1241, followed by the requested
data. followed in turn by .1261, The datacomputer does not
output a controli-Z at the end of the data. The user program
can use these messages to separate out the data from all
other information.

Qoening @ Secondary Port

Instead of a datalanguage port, an additional network
connection or secondary port can be used for transmitting
data. Non-ASC!! data, Iincluding an ASCI1 STR with a
preceding count or a non-ASCI1 delimiter, must be
transmitted over a secondary port. The CONNECT request sets
up the secondary port,.

The CONNECT request names an open PORT, and glves a
host (that Is, a computer on the network) and socket number
to which that PORT Is to refer. As mentfoned above, if a
CONNECT request is never executed for a PORT, it will refer
to the socket from which the wuser program transmits
datalanguage (if 1t is a READ PORT) or the socket at which
the user program recelves the datacomputer's messages (a
WRITE or APPEND PORT), The form of the CONNECT request is

SR O ——- V‘L‘v——w

—p—

Chapter 6: Using the Datacomputer Page L8

CONNECT <pathname> TO <address> ;

where <{pathname> 1|Is the node name, comlete name (l.e,
starting with %top) or simple login name (i.e. starting
Immediately subordinate to the login node) of an open PORT,
and <address> can have several forms. 1t can be one of

{socket-no> the decimal number of a socket at the
user's host computer,

<host=-no> <{socket-no> where <host-no> is the decimal
number of a computer on the ARPA network

'<host-name>' <socket-no> where <host~name> is the host
computer's TENEX alphabhetic name

<host-name> <socket-no> where <host-name> is the host
computer's TENEX alphabetic name
(such as 'CCA')

OR '<local-file-designator>' This last form of <address>
does not refer to the network, but fis
included here for completeness.
{local-file~designator> is a TENEX
file designator that refers to a flle
at the datacomputer site,

A CONNECT may be executed any time the PORT 1Is open,
but it does not actually establish the network connection.
Those connections are established, used, and then closed
again during the execution of an asslignment statement in
datalanguage, and CONNECT merely sets up the socket address
to be wused when the PORT 1Is later referenced In an
assignment.

A DISCONNECT request may be used to cause a CONNECTed
PORT to refer once agaln to the datalanguage input or output
port.

DISCONNECT <pathname) ;

Two CONNECT requests may be issued for the same PORT without
an intervening DISCONNECT.

Additional synchronization messages are generated at
the time a CONNECTed PORT 1is used In an assignment
statement. These messages are

.1230 OCPBO: OPENING {NPUT PORT
;1239 OCPBO: INPUT PORT OPENED

« 1250 OCPHBC: CLOSING INPUT SOCKET
.1240 OCPOO: OPENING OUTPUT PORT

T ety

—_—%

PR S o5 e by

I T P AT VU SO PO . SO W el NN

RS SN

"~y

T
el

[3

Lan g

Chapter 6: Using the Datacomputer Page 49

;1249 OCPOO: OUTPUT PORT OPENED
.1260 OCPOC: CLOSING OUTPUT SOCKET

When a CONNECTed PORT is used on the right-hand side of an
assignment {(that 1is, 1In READ mode), the .1230 message is
sent over the dataltanguage output port. This signals the
user program that the datacomputer is attempting to open a
network connection to the host and socket specifled by the
CONNECT request for the PORT., The user progrom should thus
open its end of the connection itself (if it Is a connection
to a different socket on the user program's own host) or
ensure that the third host opens its end of the connection
at this time (if it is a connection to another host on the
network) .

The ;1239 message indicates that Indeed the network
connection was opened correctly. After thils message is
received, data can be transmitted, terminated by closing the
network connection., Once the connectlon 1is closed, the
datacomputer sends .!250 over the datalanguage output port,
signaling the user program that use of the secondary network
connection is complete. The .1250 may precede or follow the
closing of the connection on the user's side,

The messages for output PORTs work similarly, with
1240 signaling that the output network connection is beling
opened, ;1249 that the connection is opened, and .1260 that
output is complete and the connection is being closed.

I1f there are errors in the data, other messages will be
sent before the .1250 or ,1260 message. This would be the
case, for example, Iif the data does not match the
description,

A user program can interrupt the datacomputer's
transmission of data; see Appendix D for details.

The form CONNECT <{pathname> TO <local-file-designator>;
may be useful to those with large amounts of data to send to
the datacomputer. In some cases, the shipment of magnetic
tapes by air-freight produces higher bit rates than sending
the data over the network; the magnetic tape may then be
addressed from datalanguage as a local file. Contact CCA
for information on this procedure.

Error Messages

Datacomputer error messages will in general be seen by
a human user, although they have header characters which
make them potentially processable by a smart user program,
Error messages fall into several categorlies, distinguished

3 3': '3.',"“@; .)

SRR

FLatrs

o s

= ——

e

Chapter 6: Using the Datacomputer Page 50

by their first character.

First Character Meaning
? indicates a datacomputer or
system bug. A user program
should rarely see one of these,

Examples:
U000 TRON: NODE CHAIN SNAFU
20000 DKWR: DISK 1/0 WRITE ERROR

- indicates a user error =--
typically bad datalanguage, data,
or i/o handling. A debugged user
program should rarely see one of
these.

Examples:
-UGO0G LPNM: FORARG NOT DIRECT LIST MEMBER
-1246 OCSOP: CAN'T OPEN OUTPUT PORT (BAD CONNECT ARGS?)

+ indicates a circumstantial error,
such as a file's being busy, or
an error which is due to current
datacomputer limitations.

Examples: +U000 OCDOP: CAN'T OPEN FILE (SOMEBODY ELSE UPDATING?
+L000 DHIN: DESCRIPTOR T0OO LARGE

After the datacomputer generates one or more error
message, it follows a special procedure to resynchronize
itself with the user. This procedure involves waiting for a
special character, control-L or form feed (ASCI| 14 octal),
to be transmitted by the user. That 1Is, after the error
message the datacomputer sends

.1220 LAEB: LOOKING FOR CONTROL-L

This is repeated for each line of input it receives on the
datalanguage Iinput port until the user sends a control-L
character, Following receipt of a control-L, .1210 will
again be sent and datalanguage requests again processed.

More severe action must be taken following certain
system or ?-type errors. One of the following
synchronization messages may be generated:

S oa e rame - - - A ot T rabidl AR

e S

|
!
=)

LI L

~—g—

A fiean,

: S RSN B Pt Wl v . vt oo Rt . SN U5 ATV MRt Serent - ~ Aot P ITIARRes
| A R

T Ik R

Chapter 6: Using the Datacomputer Pare 51

.J151 FCERRH: RESTARTING THF REQUEST HANDLER
.J140 FCREIN: REINITIALIZING USER JOB
.J919 FCERRH: CRASHING JOB

The .J151 message indicates that TEMP PORTs have been
deleted; otherwise, the status of the session remains the
same (PORTs and FILEs will still be open, etc.). This
message will wusually be followed by .1220, a request for
control-L.

The .J140 message is more serious. The user's job s
completely reinitialized, leaving his status the same as
when the session was begun. This message will also be
followed by .1220.

The .J910 message indicates a condition so severe that
the datacomputer does not know how to recover., The user's
job Is crashed and the datalanguage network connections
closed. That is, the session is forcibly ended.

If this happens, and also if the user's network
connections to the datacomputer are accidentally broken, the
datacomputer will do its best to close his open PORTs and
FILEs in an orderly manner. However, if the user was In the
process of transmitting data into a FILE, the last few
thousand characters of data his program sent may have been
lost in transit and not incorporated into the FILF,

Not much In general can be said about handling ? or -
errors, except that a human user will have to read and
interpret the text of the error message In each case, and
(in the case of =~ errors) correct the datalanguage he is
having his program send.

+ errors, on the other hand, could be processed by a
user program, The most reasonable thing to do in many cases
is to wait five minutes and retry the datalanguage request
that caused the error. For example, a FILE which was busy
(i.e. In use by someone else) may be free by that time, so
the second attempt to use it may be successful,

Messages beginning with +L are an exception to thls, in
that the appropriate time to wait may be several weeks
instead of minutes. Such messages indicate limitations of
the current datacomputer system, such as limitations imposed
by internal table sizes. A new version of the datacomputer
may remove many of these limitat.ons. Reallstically, this
means that +L messages are)like - messages in that a program
probably could not handle them,

— ;) i

— s

g =

.v,,\ Lt
PR CSE St

B 8 i 4L it 2 T RER

T

Page 52

Appendix A: Summary of Datalanguage Syntax

The following is the complete BNF (BPackus Normal Form)

specification of datalanguage syntax for version 0/10 of the
datacomputer.

Requests

{request> :1:= ;

Directory Requests

! {request> ::i= LOGIN <login body> ;
‘ {request> ::= CREATE <{create body> ;
' {request> ::= DELETE <{(delete body>
| {request> ::= OPEN <open body> ;
@i <request> ::= CLOSE <close body> :
Y {request> ::= CONNECT <connect body> ;
i {request> ::= DISCONNECT <disconnect body> ;
| {request> ::= MODE <mode body> ;
: {request> ::= CREATEP <createp body> ;
I {request> ::= DELETEP <{deletep body> ;
Y ‘ * {request> ::= LIST <list body> ;
{
|
20 AN Data Transfer Requests
) {request> ::= <direct assignment> ;
{request> ::= <for loop> ;
4
{.
——- v b AR REERE ST T Y Yo B) b 4 ——— " e gt P SR
- s ey e .

———

S e

“"%;, ,

e
'y

IR XN

R e T

R 84 <

e
oY

L e

Appendix A: Summary of Datalanguage Syntax Page 53
Directory
Pathnames
{pathname> ::= <complete pathname>
1 {pathname> ::= <simple complete pathname>
[{pathname> ::= <login pathname>
. <pathname> ::= <simple login pathname>
{« (pathname> ::= <open node name>
'5 <node name> ::= <identifier>

S {node name> ::= <identifier> (<password string>)
[= | {password string> ::= <string constant>
o (simple node name> ::= (identifier>
! {complete pathname> : %T0P . <node name>
{complete pathname>

<complete pathname> . <node name>

{(simple complete pathname> ::=
%TOP ., <simple node name>

) (simple complete pathname)> :

<simple complete pathname> . {(simple node name>

<node name>
{login pathname> . <node name>

{login pathname> :
{login pathname> :

{simple login pathname> {simple node name>

{<simple login pathname> :
' <simple login pathname> . <{simple node name>

{open node name> ::= <simple node name>

{complete pathname>

' ! {node pathname> =
: ‘ = <(login pathname>

<{node pathname>

{simple complete pathname>
<simple login pathname>
<open node name>

<open pathname>
<{open pathname>
<open pathname>

fx

e oo oo
s oo oo
® HoN

4 20

P e v 1L LAl

Appendix A:

Directory

Requests

<login body>
<login body>

{create body>

{create body
<{node pat

{create body>
{create body>
{node pathna

{delete body>

Summary of Datalanguage Syntax Page Su

= %TOP
= <node pathname>

{simple node name>
>
hna . {<simple node name)

>
= <data description>
>

ERRE

. <data description>

* &

{delete body> ::= <login pathname>

{delete body>

<{open body>
{open body>

<{close body>
<close body>

{login pathname> , =+

- {node pathname>
: {node pathname> <{mode>

= %0PEN
= <open pathname>

{connect body> ::=
{open pathname)> <tenex file specification>
{connect body> ::=

{open pat
{tenex file

hname> <network specification>
specification> ::= <string constant>

{network specification> ::= <(socket number>
<{network specification> ::=
<host specification> <{socket number)
{socket number> ::= <(integer constant>
<host specification> ::= <integer constant>
<host specification> ::= <(identifier>
i:=

<host specification>

<{disconnect

<{mode body>
<{mode>
<{mode>
<{mode>
<{mode>
<{mode>

{string constant>

body> ::= <open pathname)

t:= <open pathname> <mode>
READ '

WRITE

APPEND

WRITE DEFER

APPEND DEFER

o ¥

-

n'a,;-.: £ F W Yol & -:‘ -

Appendix A:

{createp body> ::
{createp body> ::

<{node pathname) <privilege tuple speciflication>

{privilege tuple specification>
<privilege tuple option>
<privilege tuple specification>

Summary of Datalanguage Syntax

<{node pathname>

Page 55

T3]
HE

g

<{privilege tuple specification>

<privilege tuple

<privilege tuple option> ::

{privilege tuple option>
{privilege tuple option>
{privilege tuple option>
<privilege tuple option>

. G = {grant privilege

-t 50 ¢0 oo s o

{privilege tuple option> ::=

» D = {deny privilege list)>
<privilege tuple option> ::=

. N = {privilege tuple index>

user identity> ::= =x=*
<user identity> ::= <user node>
<user identity> ::= <user node set>
{user identity> ::= <user node) , #*»
{user identity> ::= <user node set) , **
Cuser identity> ::=

user node)> , <user node set) , *x

= <(identifier>

<user node> ::
<user node> ::

{user node set> *

{user node set> ::= <(user
<host Identity> ::= ANY
<host identity> ::= LOCAL
<host identity> ::=
<{socket identity> : ANY

{socket identity>
{grant privilege list
grant privilege list> ::=

<grant privilege list><grant privilege>

<grant privilege> ::= (
<grant privilege> ::= L
<grant privilege> ::= R
{grant privilege> ::=2 W
{grant privilege> :1:= A
<{deny privilege 1ist> ::
{deny privilege list> ::
{deny privilege list><
{deny privilege> ::= R
{deny privilege> ::= W
{deny privilege> ::= A
{privilege tuple index> ::=

{deletep body> ::=

<{node pathname> <{privilege tuple Index>

-
:l
:I
:=
is

{user node> .

{integer constant>

=
= (integer constant>
>

deny privilege>

option>

= , U = Cuser identity>

, H = <host identity>

., S = {(socket identity> !
. P = {password string>

to

PR WY o7 UPTIE
RS2 A AN

<identifler>

node set> . *

{grant privilege>

{deny privilege>

{integer constant>

Appendix A:

{list
{list
{list
<list
<list
<{list
<list
{list
{list
{list
<list
list
{list
{list
{list
{list
{list
<list

Summary of

body> ::=
body> ::=
node set)> :
node set)
node set>
node set)
node set>
node set>
node set>
node set>
option>

option>

option>

option>

option>

option> ::
option> :
option> ::

s o0 20 o0 o
ve ee¢ oo oo oo

1
=

s m *%
=

Datalanguage Syntax

{list node set>

<{list node set> <list option>
3T0P

%OPEN

*

{open node name>
<{node pathname>
<{node pathname> ., *
<{node pathname) . =+

%INAME

$DESCRIPTION

%DESC

%2SOURCE

ZALLOCATION

2ALLOC

%PRIVILEGE

PRIV

PR SRYFSL ¥ 143 L

Appendix A: Summary of Datalanguage Syntax Page 57 g

:

B Data Description e

-

. (datatype> ::= <compound datatype> %
‘ {datatype> ::= <(simple datatype>

| {datatype> ::= <string> 3

{compound datatype> ::= LIST :

‘ {compound datatype> ::= <structure ﬁ

‘ {structure> ::= STRUCTURE -
{structure> ::s= STRUCT .

{simple datatype> ::= BYTE
<{simple datatype> ::= <integer>
<integer> ::= {INTEGER

{integer> ::s |INT

<string> ::= <string type>

{string> 1i1:= <(string type> <{string interpretation>
{string type> ::= STRING

{string type> ::= STR

M TagAlian oguemen oo —
R & LY {5 T

{string interpretation> i:= ASC!|
{(string Iinterpretation> ::= ASCII8
<{string Interpretation> ::= BYTE
<{string interpretation> ::= INT
{string interpretation> ::= INTEGER

XS

.J"‘—"wmr“ e —e oo

A e L

-
N
o7 =
. . .
E . : [" :
v -
.
F; . S e o et gt B — = - > o

H Appendix A: Summary of Datalanguage Syntax Page 58

{data description> ::= _
‘ <simple node name> <function> i
i {outermost description> g
‘ <function> ::= FILE

<{function> ::= PORT %

i {function> ::= TEMPORARY PORT S
’ {function> ::= TEMP PORT “
{outermost description> i= LIST <descriptiony fé

<outermost description> :i= 2

LIST <compound datatype options> {description> %

{outermost description> ::= {string>
{string> <string options>

= <description>

<outermost description> 3
<outermost description> 3

{description> ::=
: LIST <dimension> <description’
‘ {description> ::=
t’ LIST <dimension)> <compound datatype options>
{description>
{description> i:=
(structure> <descriptions> END
[<description> =
{structure> <compound datatype options>
{descriptions> END
<description> ::= BYTE
{description> = BYTE <simple datatype options>
<description> = <{integer>
<description> = <integer> <simple datatype options>
{description> = <(string> <dimension>
n

<{description> :
<string> <dim

<{descriptions>

<(descriptions>

sion) <string options>
= <description>
= <descriptions> <description>

e

T g T T e o

Appendix A: Summary of Datalanguage Syntax Page 59

{description
{description
{description
{description

{inversion option> ::
{inverslion option> ::
{byte slize option> ::

option>
option>
option>
option>

HE
=
=
=

<filler option> ::= , F
E

<inversion option>

<byte size option>

<filler optlon>

{variable length optlion>
t =0

| = 1

B = <i{ntefger constant>
{Integer constant>
'¢nonquote character>'

T —p—

<filler option> ::= ,

=

<variable length option> ::= , C =1
{variable length option> ::= , P = EOF
{variable length option> ::= , P = EOB
{variable length option> ::= , P = EOR
{variable length option> ::= , D = {integer constant>
{variable length option> ::=

, D = '¢nonquote character>' :

A

{compound datatype options> ::= £
<compound datatype option) §
{compound datatype options> ::= 3
{compound datatype options> =

-

<{compound datatype option>
{compound datatype option> ::= <byte size option> e
{compound datatype option> :: {filler option>
<compound datatype option> ::
{variable length option>

{simple datatype options> ::=
{simple datatype option>

{simple datatype options> :
{simple datatype options>

{simple datatype optiond>

<simple datatype option> ::= <inversion option>

<simple datatype option> :: {byte slize option>

{simple datatype option> :: {filler option>

.
HE

= <string option> .
= (string options> <string option>
{inversion optlon>

{string options> :
.
= <hyte size option>
=

{string options>

<string option> :
{string option> :
<{string option> :
{string option> :

<filler option>
{varlahle length option>

(<integer constant>)

<dimension> =
= (, <{integer constant>)
=

<dimension> :
<{dimension> :

(<integer constant> , <integer constant>)

‘?,,

.
»
9
3
o
o

Appendix A: Summary of Datalanguage Syntax

Data Transfer

:= <(identiflier>
:= <data reference> . <{identifler>
tring constant>

nteger constant>

{data reference> = {data reference>
{data reference> = <{constant>

{data reference> :
{data reference> :
{constant> ::= <(s
{constant> ::= (I
{asslgnment> :

{assignment> :

' =
:8
<asslignment>

{implicit for loop>

Cassignment> <qualifler>

{direct assignment>
{direct assignment>
<implicit for loop>

e oo oo
ee oo oo
nwan

{for loop> ::= FOR <input> <for body> END i
{for loop> ::= FOR <input> <qualifier> <for body> END p
{for loop> ::= FOR <output> , <input> <for body> END A
{for loop> ::= ¥
FOR <output> , <input)> <qualifier> <{for body> END E
<input> 3::= <(data reference> 2
{output?> ::= <data reference> e
{for body> ::= <for loop> -
{for body> ::= <for loop> ; :
{for body> ::= <assignment list>
{for body> ::= <assignment list> ;

Cassignment list> ::= <assignment>
<assignment list> ::=
Cassignment list> ; <assignment>

{qualifier> ::= W!ITH <boolean expression>

{relational expression>
(<boolean expression>)
NOT <boolean expression>
ANY <boolean expression>

{boolean expression>
{boolean expression>
{boolean expression>
<{boolean expression>
<{boolean expression>

<boolean expression> AND <boolean expression)>
<{boolean expresslion> ::=

<{boolean expression> OR <boolean expression>

o oe &% oo o9
o8 o0 50 o0 o
| I B B R

(relational expression> ::=
{data reference> <{comparlison operator>
{data reference>
ﬁ {relational expression> ::=
L {data reference> <{comparison operator> <{constant>

{comparison operator> ::= EQ
{comparison operator> ::= NE
1 {comparlison operator> i:= GT
{comparison operator> ::= GE
{comparison operator> t:= LT
i {comparison operator> ::= LE
|
[|
|
-* dl T ey S

Appendix A: Summary of Datalanguage Syntax Page 61

Lexical |tems

<identifler>

{integer constant>
{string constant>
<autonomous character>

{lexical ltem)
<{lexical item>
{lexical item
] <{lexical item)

——pr——

os oo oo se
oo o0 oo oo
nNunwH

{identifier>
(identifier>
<identifier>
<identifier>
I, Cidentifier>

{letter>

%

<identifier> {letter>
(identifier> %
<identlfier> <digit>

, {integer constant> ::= <diglit>
<integer constant> ::= <integer constant> <digit>

tring constant body>'
{nonquote character>

{string constant> ::= '
{string constant body> :
{string constant body> :

{string constant body>

VP OR I

<s
<{nonquote character>

BN 4 vk AR

';‘ﬂ;;.';‘]b
’”

e i A

el

E A - vy

{eol> 1::=
{eold> ::=

{carriage return)> ::=
{line feed>

Appendix A: Summary of Datalanguage Syntax Page
Character Set

{letter> ::=

{letter> ::= B

{letter> ::= Z

{letter> ::= 2

{letter> ::= b

{letter> ::= 2

{digit> :1:= 0

{digit> ::=2 1

<digit> 3::= 9

<{nonquote character> :i= <letter>

<nonquote character> ::= %

<{nonquote character> ::= <digit>

<nonquote character> ::= <autonomous character>

<{nonquote character> ::= (space)

{nonquote character> 1i:= (horlizontal tah =-- HT)

{nonquote character> ::= !

{nonquote character> :1:= "

{separator> ::= (space)

{separator> ::= (horizontal tab == HT)

{separator> ::= <eol>

{end of line ~- octal 37)
{carriage return> <line feed>
(carriage return -~ CR)
HEE (line feed -~ LF)

IS .
'

—————
TN —

62

———

S
T aKvea o

Ny ST
i

X
i
-

——

Appendix A:

D T L

{autonomous
<autonomous
<autonomous
<autonomous
{autonomous
{autonomous
<autonomous
{autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<{3autonomous
{autonomous
<autonomous
{autonomous
{autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
{autonomous
{autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous

Summary of Datalanguage Syntax

character)
character)
character>
character)
character)
character)
character>
character>
character)
character)
character>
character)
character>
character)
character>
character)
character>
character>
character>
character)
character>
character>
character)
character)
character)
character)
character)
character>
character)

* AW N~

o e g —

(IR Y

Pk T b N

-
LYY LI

e

—— -

S ——

J S

PR P RO Mevi e vy«

Appendix A: Summary of Datalanguage Syntax Page 64

Notes

Character codes are 7 bit ASCII.

Separators are always permitted between lexical Items,
except between grant privileges, between deny
privileges, and Inside string constants.

Comments may be Inserted wherever separators are
allowed, Comments begin with '/+' and end with Te/!
(e.g., /* THIS IS A COMMENT */).

(carriage return> and <line feed> may only appear
together in that order (as an <eol»). Otherwlse they
are treated as control characters, which are rejected.

'
Al
R

s X y i ,v'.‘(. f,r‘ .
r’i& ! R g v

PN L’{!‘Q

R §

*. e

- —

AND

ANY
AsC11
ASCI 18
BYTE
CLOSE
CONNECT
CREATE
CREATEP
DELETE
DELETEP
D1SCONNECT
END

EQ

FILE
FOR

GE

GT

INT
INTEGER
LE

LIST
LOGIN
LT

MODE

NE

NOT
OPEN

OR

PORT
STR
STRING
STRUCT
STRUCTURE
WITH
%0PEN
%70P

S |

U

Appendix B:

e ety -

Reserved Words

Page

65

L e e e P e

Hidpih

1kt ca ey

Page ©66

) Appendix C: Inversion: Technlical Conslderations

An inversion is a secondary data structure that
the datacomputer can use to improve Its efficliency In
retrieving data by content from a datalanguage FILE.
Specifically, an entry In the inversion iIs constructed
for every STR with the inversion attribute. For each
data value which occurs for the STR, the Inversion
contains pointers to all the records In the FILE for
which that STR contains that value,

For example, if

CREATE PEOPLE FILE LIST
PERSON STRUCT
NAME STR (15)
SOCSECNO STR(9),1=D
| SEX STR (1) /+ 'M' OR 'F'#/,1=D
ZIP STR(5),1=D
END;

A...;
i
«
)
-
2
o
2
.

w

then the data structure for the Inversion on SEX
contains pointers to all instances of PERSONs with SEX
f equal to 'F', and similarly for 'M', Thus, evaluation

of a simple FOR input-spec like
FOR ... , PEOPLE.PERSON WITH SEX EQ 'M!

would be quick and simple, and would require only a
read of the Iinversion, not any reading of the FILE
PEOPLE Jtself.

An inversion is not only constructed automatically
by the datacomputer when the FILE is loaded with data,
' but 1is automatically maintained (updated) whenever
information in the FILE is updated.

Unfortunately, even Iif an Inversion for the
appropriate STR exists, the datacomputer cannot always
use it for the evaluation of Input-specs, and must
sometimes resort to time-consuming searches of the
1 FILE. 1In particular, the inversion can be used only
when the STR 1is compared with a constant ysing the
qperators EQ and NE. That is,

i Rt o AL I NURER T S " o 0 - :
'4' R } m_ ™ m" S PP e e—
L

el

R e S

Appendix C: Inversion: Technlcal Considerations Page 67

PEOPLE,PERSON WITH ZIP EQ '02138' OR ZIP EQ
'02139"

OR ZIP EQ '02140' OR ZIP EQ
'02141"

can be evaluated directly from the inversion. However,

PEOPLE.PERSON WITH ZIP GE '02138"
AND Z1P LE '02141'

while it still can be evaluated, cannot take advantage
of the inversion and so would be much less efficlient
datalanguage.

Furthermore, when the STR is a member of an Inner
LIST, only the oehrator EQ can be evaluated using the
inversion. A sequential search Is used for evaluating
NE.

Complex Boolean expressions, those involving
several comparisons, fall into three classes: those
with all comparisons evaluable from the inversion,
those containing no comparisons evaluable from the
inversion, and those which mix the two kinds of
comparisons. The first two classes pose no problem;
the datacomputer will use the inversion to evaluate
expressions in the first category, and not for
expressions in the second category.

For mixed expressions, the datacomputer will use
the inversion as much as it can. For the present, thls
can be stated as follows: if the Boolean expression |is
of the form

<expr> AND <expr> AND ...

(where <expr> is an arbitrary Boolean expression, In
parentheses if it contains OR) then the datacomputer
will separate the <expr>s Into those that can be
completely evaluated from the inversion and those that
cannot, and will process those that can use the
inversion first, The <expr>s that cannot use the
Inversion are evaluated by an exhaustive search of the
set of records selected by the earlier <exprds.

For an example, take the above FILE, PEOPLE,
Suppose a list of all males with ZIP GT '02000' were
desired. ZIP is Indeed Inverted, but since the
operator GT is involved, the evaluation of that part of
the Boolean expression cannot use the inversion. As a
result, In

Appendix C: Inversion: Technical Considerations Page 68

FOR ... , PEOPLE.PERSON WITH ZIP GT '02000' !
AND SEX EQ 'M'

;
the datacomputer will first use the Inversion to find 4
the set of all PERSONs with SEX EQ 'M', and only this f
smaller set of PERSONs would be searched for the | ¢

desired ZIPs. -

A more difficult example: consider the problem of
retrieving all the records for events that occurred
between 10:05 on the 25th and 15:07 of the 30th from a
FILE that 1is inverted on DAY but not on TIME, A
straightforward way to do this Is

... WITH (DAY EQ '25' AND TIME GT '10:05")
OR (DAY EQ '26') OR (DAY EQ '27') OR

OR (DAY EQ '30' AND TIME LT '15:07'")

but this is quite inefficient: the inversion cannot be
used at all, for this Boolean expression is mixed and
is not set up as a series of terms connected by AND.
The best way to express this condition is

oo e S N) -

... WITH (DAY EQ '25' OR DAY EQ '26' OR ... OR
DAY EQ '30")
AND (DAY NE '25' OR TIME GT '10:05')
AND (DAY NE '30' OR TIME LT '15:07"')

In this case, only records for the correct six days are
retrieved by the first term, so only they need to be
searched through for the evaluation of the second and
third terms.

Future versions of the datacomputer wil
automatically optimize mixed Boolean expressions,
freeing the user from this task.

The computation of the space requirements for an
inversion s best left to the datacomputer's
operational staff at CCA, who should be contacted by
any user iInterested in setting up a data flile with an
inversion,

7 R R . A~ ot B A« £ h e

Pare 69

Appendix D: Network Interaction with the Datacomputer

The procedure for establishing network connections
with the datacomputer is that documented in J. Postel,

Ielnet - Logeger Initial Connection Protocol,
NIC 7103, 15 June 1971. The following Is a simplified,
informal description of that procedure.

The datacomputer listens for connections on a
well-advertised socket, currently number 103 (octal) at
CCA, host number 37 (octal). This Is an odd-numbered
or send socket. The user program wishing to use the
datacomputer will address this socket from a socket on
his own host computer -- say from socket number U, U
must, of course, be an even number or a recelve socket.
The wuser program should read one 32-bit byte of
information over this connection and then immediately
close it (leaving socket CCA-103 free for other users).
This byte of information is a socket number at the
datacomputer =-- say socket D, D will be an even
number.

The last step is the opening of two network
connections, the permanent datalanguage connections.
They are

from D+1 at CCA to U+2 at the user host
and from U+3 at the user host to D at CCA.

Note that U+2 is even (since U is) and D+1 is odd =~
this 1Is the datalanguage output socket. Also, U+3 is
odd, and D is even: the datalanguage Input socket.
These connections will remain in effect until the end
of the datalanguage session.

The byte size of the permanent datalanguage
connections 1Is 8 bits. The datacomputer sends, and
expects to recelve, 7-bit ASCI1 | characters
right-justified in 8-bit bytes.

Two special network control signals, INS and |INR,
may be wused to interrupt the datacomputer. INS, for
loterrupt the sender, may be sent at any time during
the processing of a request and stops data output from

wa" > Al

”

T ¥7 1 2 ks

C.w
~*

© e

%3

Appendix D: Network Interactlion with the DatacomputerPage

the current request. No error message or other
acknowledgement will be generated; the output simply
stops. INS might be useful to a program which receives
output from the datacomputer and displays It to a human
operator sitting at a teletype; at the request of the
user, the program could send INS to stop an overly-long
printout.

INR, for Jnterrupt the receiver, performs all the
functions of INS. In addition, compilation or any
other processing that is under way when INR is received
will be aborted, possibly generating an error message
and a request for control-L. INR thus requests a more
immediate halt than does NS,

70

mm. vy o . ‘ ? Fin —— m
—_—

LR

Page 71

Appendix E: Implementation Restrictions

A number of datalanguage restrictions specific to
Version 0/10 are collected here for ready reference.
Note that some of these restrictions have been
mentioned in the body of thls manual, while others have
not.

1. There is a restriction on the containers
that can be referenced in the body of a FOR=-1o00p.
Consider the following example:

CREATE FF FILE LIST
PERSON STRUCT
NAME STR (15)
ADDRESS STR (20)
CITY STR (10)
STATE TR (2)
ZIP STR (5)
SOCSECNO STR (10)
DEPENDENTS LIST (10)
NAME STR (15)
END;

CREATE PP PORT LI!IST
PERSON STRUCT
NAME STR (15)
SOCSECNO STR (15)
END;
To output all the DEPENDENTS.NAMEs from the file FF,
together wi th the SOCSECNO of the PERSON whose
DEPENDENTS they were,
FOR PP.PERSON,FF.PERSON
NAME =NAME ;
SOCSECNO=SOCSECNO;
END;
This example as written will work In datalanguage 0/10,
However, 1f SOCSECNO occurred after DEPENDENTS in the
description of FF.PERSON, the request would fall due to
a compliler restriction.

When an inner FOR-1oop is processing a LIST which
occurs within a STRUCT, references may he made In the
body of that FOR to objects which ccecur before that
LIST in the STRUCT, but not after the LIST.

- g

ot

. «w«mfg*‘

Appendix E: Implementation Restrictions Page 72

There are certain cases of assignment (nvolving
inner LISTs which the compiler in Version 0/10 cannot
handle. For example, given two structures of the
following format:

L1 FILE LIST

S1 STRUCT -
Al STR (8) P
A2 LIST (4) +
B2 STR (6) :
END;
and
L2 PORT LIST
S1 STRUCT i
Al STR (8) 5
A2 LIST (4)
B2 STR (6)
END;

the following FOR-loop will not work:
FOR L1.S1,L2.S2
FOR A2.B2,A2.B2
S1=S1
END
END;
The A2 lists are in use by the Iinner FOR-loop (FOR
A2.B2,A2.B2) when the assignment S1=S1 is encountered. N
The datacomputer expands S1=S1 internally into: &
Al=A1l
FOR L1.S1.A2.B2,L2.S1.A2.8B2
82=82
END;
This constitutes a second use of the A2 1lists, which
cannot be handled.

o e EbnLEAMAS

I

2. In Version 0/10 of datalanguage, there is one
general restriction on sequences of nested FOR-loops,
which can be stated as follows:

Sequences of nested FOR-loops are restricted to be
a number (possibly 0) of FOR=-loops without output
LISTs, followed by an arbitrary number, at least 1, of
FOR=100ps with output LISTs,

For example,

FOR A FOR A FOR A

FOR B,C FOR B

(ASSIGNMENT)
(ASS I GNMENT) FOR C,D -END;

END; (ASS1GNMENT)

END; END;
END;
END;
The first two examples are legal, whereas the third Is

not.

. v e,

Appendix E: Implementation Restrictions Page 73

3. A FOR=loop with no output LIST can contain
only gpne datalanguage statement as the FOR-body, not a
series of statements. Because of restriction 2, that
one statement must be a FOR.

This does not apply to a FOR with an output LIST,

4, The only comparison operators which can be
evaluated from an inversion are EQ and NE. All other
comparison operators must be evaluated by a 1lnear
search through a set of records. {f the contalner
being compared is a member of an lnner list, only the
EQ comparison operator can be evaluated from an
inversion.

5. It is impossible to assign members of a LIST
wi thout setting up a FOR-1oop (efther explicitly or
Iimplicitly). For example, given the PORT is:

CREATE L1 PORT LIST (5)
S1 STR (3);
The following assignment is illegal:
L1.S1="'FO0"';
because it treats the flve members of S1 as If they
were a single data item,

6. Two outermost contalners with the same name
may not be open at the same time. This is true even
though the containers may have different pathnames in
the directory.

7. tf an output PORT is punctuated, all
assignments before each punctuation character must be
completed before any assignments are made after the
punctuation character. That 1Is, the datacomputer
cannot back up over punctuation in an output PORT, For
example, given an output PORT of the form:

PP PORT LIST
S1 STRUCT
Al STR (3),P=EOR
A2 STR (3),P=EOR
END
assignments must be made In the same order as the STRs
appear in the STRUCT.
Al='F00°';
A2='BAR';
will take effect correctly, but

A2='BAR’';
Al='F00';
will not.
Because of the internal paging of the
datacomputer, STRUCTs containing 1long STRs (i.,e.
greater than 2560 ASCil characters) have a similar

restriction, for example, the LIST

e

U " s PRt RRINERLAY,

AT SN

Appendix E: Implementation Restrictions Page

FF FILE LIST
S1 STRUCT

Al STR (10000)

A2 STR (10000)

A3 STR (10000)

END
may have assignments done only in the same order
they appear in the STRUCT.

as

bw S35 PR St v

QT

e e — ——

R JREIE DAPNCY DO TSN i ey T ——

Page 75

Appendix F: Differences hetween 0/9 and 0/10

—F

The following is a list of changes which, when
performed on 0/9 datalanguage, results in the
datalanguage for 0/10, The changes are purely user
specifiable (i.e. syntactic) features.

Additions

Login
The LOGIN request
The login context
The %TOP context

Privileges
The CREATEP request
The DELETEP request
Passwords in pathnames
Simple pathnames (without passwords) for open nodes
Variable length
Data description options -- P, D, C
Dimension == (min,max)
The datatype BYTE
The implicit FOR loop
The boolean operator ANY

Defer mode -- WRITE DEFER, APPEND DEFER

TN S INE TR WL T

New data description options -- I=|, B, F

New LIST options -- JALLOCATION, %PRIVILEGE

LIST 3TOP
LIST »

' ' Appendix F: Differences between 0/9 and 0/10 Page 76

! CLOSE %OPEN

String interpretations -- ASCII, ASCi18, BYTE

Synonyms =- STRUCTURE, STRING

LA YT

O

Modifications

L)
o’

RPN

. ** replaces %ALL
Elimination of the . between LIST's nodes and option
YNAME is now an explicit LIST option

DELETE <pathname).** Is now explicit

TR PN

s SRR £ 2 s e ith i G RNE BN R ST L

]

I 'mMﬁ-—‘.:.m‘ [
MFa- 1 CALTION = RINOVE PGOTICTCR CUEES BIFOLE TV 2ii0 a
“TO BE STORED IN A COOL DRY LOCATION"
(Y
ry -
1.PR0OC. INSTRUMENT IDEN(CONTRACT) (ORDER) NO. | 6. INVOICE 7. PAGE IOF
MATERIAL INSPECTION l [
(4] NO. _____l l_.
N 8.ACCEPTANCF POINT
RECEIVING REPORT MDA903-74-C-0225 DATE D
2. SHIPMENT NO, 3.DATE SHIPPCD a6/L 5. DISCOUNT TERMS
~ TCN
CCA00003 9/20/74
9. PRIME CONTRACTOR CODE 6 AQ 4 6 10. ADMINISTERED BY CODEI S2202A
) Computer Corporation of-America Mr. J. McDonourh
é?%‘Technolop S’uare Defense Contract Administration
: Cambridpe. MassAehusetts 02139 Services Region, Boston
1 i e £€5 ’ 666 Summer Street
. ! Boston, Massachusetts 02210
":. ‘ V1. SHIPPED FROM (If othar then 9) coo£| FOB: 12. PAYMENT WiLL BE MADE BY coos] S2202A
¥ Disbursing Officer
. Defense Contract Administration
Jame as 9. above Services Rey,ion, Boston
666 Summer Street
\ Boston, Massachusetts 02210 :
§ k o
13.SHIPPED TO CODEI W73Q0QPR . 14. MARKED FOR cooel 5
Defense Advanced Rescarch Projects Agy.)
Archit Buildine
| A ,?Ct ui X Same as 13.
1400 Wilson Boulevard
Attn: Dr. Crairm Fields
P Arlinston, Virginia 22209
Te 16. STOCK/PART NO. DESCRIPTION 12, 18. 19. 20.
'NOM (Indicate number of shipping containers - type of 53?;/'::7~Iyo . UNIT UNIT PRICE AMOUNT
cnntamee - contarnar number. | ' .
N0N2 AB | Semi-Annual Techinical Report o) NSP
) :
‘ §
;
‘ -
! ; &
h) b}
: e
. ‘:
: =
1. ' P
" X
2 PROTUR TWENT QUALITY ASSURANCE 22, RECIIVER'S USE “»
’ - A Corom — U DESTINATION Qianntios shown i column 17 were eaceived in)
D-”’:r\ D\CCEPYAHQE of listed itams has brnn ma? D PRA D ATCEPTANCE of 1. .ted items hos bron made opparent good condition except o3 noted. g
Ly v oe o dor my suporvision 0= f they eonbam tn contrazt,] by me or und e my wupervesien and thry conform to contract, v
excrpt 03 noted heren or on suppstting documents, excapt a8 ngted herein ot on supporting documents,
! DATE £.CLIVED SIGNATURE OF AUTH Cuvi 1ot
TYPLD NAME ;
) o i o AND 0; FICE
CATE SIGNATURE OF AUTH GOV REP DATEL SIGNATURE OF AUTH LOVT R.P
* if quantity tercived By the Governmant s 1> g3=2 o3
want.iy shopped, ind-caro by () maek, of dod-
TYPED NAME TYPED NAME 7c':~nlr,’cr:levpgtmal a;::..,',mﬂ’ed b:l:z- quoim,
AND OFFICE AND TITLE shipped ond encercle

23.CONTRACTOR USE ONLY

|-33

END

Bt

e AR

e iVl

